Libav
aacps.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 Parametric Stereo decoding functions
3  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdint.h>
23 #include "libavutil/common.h"
24 #include "libavutil/internal.h"
25 #include "libavutil/mathematics.h"
26 #include "avcodec.h"
27 #include "get_bits.h"
28 #include "aacps.h"
29 #include "aacps_tablegen.h"
30 #include "aacpsdata.c"
31 
32 #define PS_BASELINE 0
33 
36 #define numQMFSlots 32 //numTimeSlots * RATE
37 
38 static const int8_t num_env_tab[2][4] = {
39  { 0, 1, 2, 4, },
40  { 1, 2, 3, 4, },
41 };
42 
43 static const int8_t nr_iidicc_par_tab[] = {
44  10, 20, 34, 10, 20, 34,
45 };
46 
47 static const int8_t nr_iidopd_par_tab[] = {
48  5, 11, 17, 5, 11, 17,
49 };
50 
51 enum {
62 };
63 
64 static const int huff_iid[] = {
69 };
70 
71 static VLC vlc_ps[10];
72 
73 #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
74  \
86 static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
87  int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
88 { \
89  int b, num = ps->nr_ ## PAR ## _par; \
90  VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
91  if (dt) { \
92  int e_prev = e ? e - 1 : ps->num_env_old - 1; \
93  e_prev = FFMAX(e_prev, 0); \
94  for (b = 0; b < num; b++) { \
95  int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
96  if (MASK) val &= MASK; \
97  PAR[e][b] = val; \
98  if (ERR_CONDITION) \
99  goto err; \
100  } \
101  } else { \
102  int val = 0; \
103  for (b = 0; b < num; b++) { \
104  val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
105  if (MASK) val &= MASK; \
106  PAR[e][b] = val; \
107  if (ERR_CONDITION) \
108  goto err; \
109  } \
110  } \
111  return 0; \
112 err: \
113  av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
114  return -1; \
115 }
116 
117 READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
118 READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
119 READ_PAR_DATA(ipdopd, 0, 0x07, 0)
120 
121 static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
122 {
123  int e;
124  int count = get_bits_count(gb);
125 
126  if (ps_extension_id)
127  return 0;
128 
129  ps->enable_ipdopd = get_bits1(gb);
130  if (ps->enable_ipdopd) {
131  for (e = 0; e < ps->num_env; e++) {
132  int dt = get_bits1(gb);
133  read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
134  dt = get_bits1(gb);
135  read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
136  }
137  }
138  skip_bits1(gb); //reserved_ps
139  return get_bits_count(gb) - count;
140 }
141 
142 static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
143 {
144  int i;
145  for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
146  opd_hist[i] = 0;
147  ipd_hist[i] = 0;
148  }
149 }
150 
151 int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
152 {
153  int e;
154  int bit_count_start = get_bits_count(gb_host);
155  int header;
156  int bits_consumed;
157  GetBitContext gbc = *gb_host, *gb = &gbc;
158 
159  header = get_bits1(gb);
160  if (header) { //enable_ps_header
161  ps->enable_iid = get_bits1(gb);
162  if (ps->enable_iid) {
163  int iid_mode = get_bits(gb, 3);
164  if (iid_mode > 5) {
165  av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
166  iid_mode);
167  goto err;
168  }
169  ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
170  ps->iid_quant = iid_mode > 2;
171  ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
172  }
173  ps->enable_icc = get_bits1(gb);
174  if (ps->enable_icc) {
175  ps->icc_mode = get_bits(gb, 3);
176  if (ps->icc_mode > 5) {
177  av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
178  ps->icc_mode);
179  goto err;
180  }
182  }
183  ps->enable_ext = get_bits1(gb);
184  }
185 
186  ps->frame_class = get_bits1(gb);
187  ps->num_env_old = ps->num_env;
188  ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
189 
190  ps->border_position[0] = -1;
191  if (ps->frame_class) {
192  for (e = 1; e <= ps->num_env; e++)
193  ps->border_position[e] = get_bits(gb, 5);
194  } else
195  for (e = 1; e <= ps->num_env; e++)
196  ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
197 
198  if (ps->enable_iid) {
199  for (e = 0; e < ps->num_env; e++) {
200  int dt = get_bits1(gb);
201  if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
202  goto err;
203  }
204  } else
205  memset(ps->iid_par, 0, sizeof(ps->iid_par));
206 
207  if (ps->enable_icc)
208  for (e = 0; e < ps->num_env; e++) {
209  int dt = get_bits1(gb);
210  if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
211  goto err;
212  }
213  else
214  memset(ps->icc_par, 0, sizeof(ps->icc_par));
215 
216  if (ps->enable_ext) {
217  int cnt = get_bits(gb, 4);
218  if (cnt == 15) {
219  cnt += get_bits(gb, 8);
220  }
221  cnt *= 8;
222  while (cnt > 7) {
223  int ps_extension_id = get_bits(gb, 2);
224  cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
225  }
226  if (cnt < 0) {
227  av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
228  goto err;
229  }
230  skip_bits(gb, cnt);
231  }
232 
233  ps->enable_ipdopd &= !PS_BASELINE;
234 
235  //Fix up envelopes
236  if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
237  //Create a fake envelope
238  int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
239  if (source >= 0 && source != ps->num_env) {
240  if (ps->enable_iid) {
241  memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
242  }
243  if (ps->enable_icc) {
244  memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
245  }
246  if (ps->enable_ipdopd) {
247  memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
248  memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
249  }
250  }
251  ps->num_env++;
252  ps->border_position[ps->num_env] = numQMFSlots - 1;
253  }
254 
255 
256  ps->is34bands_old = ps->is34bands;
257  if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
258  ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
259  (ps->enable_icc && ps->nr_icc_par == 34);
260 
261  //Baseline
262  if (!ps->enable_ipdopd) {
263  memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
264  memset(ps->opd_par, 0, sizeof(ps->opd_par));
265  }
266 
267  if (header)
268  ps->start = 1;
269 
270  bits_consumed = get_bits_count(gb) - bit_count_start;
271  if (bits_consumed <= bits_left) {
272  skip_bits_long(gb_host, bits_consumed);
273  return bits_consumed;
274  }
275  av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
276 err:
277  ps->start = 0;
278  skip_bits_long(gb_host, bits_left);
279  memset(ps->iid_par, 0, sizeof(ps->iid_par));
280  memset(ps->icc_par, 0, sizeof(ps->icc_par));
281  memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
282  memset(ps->opd_par, 0, sizeof(ps->opd_par));
283  return bits_left;
284 }
285 
288 static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse)
289 {
290  int i, j;
291  for (i = 0; i < len; i++, in++) {
292  float re_in = filter[6] * in[6][0]; //real inphase
293  float re_op = 0.0f; //real out of phase
294  float im_in = filter[6] * in[6][1]; //imag inphase
295  float im_op = 0.0f; //imag out of phase
296  for (j = 0; j < 6; j += 2) {
297  re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
298  im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
299  }
300  out[ reverse][i][0] = re_in + re_op;
301  out[ reverse][i][1] = im_in + im_op;
302  out[!reverse][i][0] = re_in - re_op;
303  out[!reverse][i][1] = im_in - im_op;
304  }
305 }
306 
308 static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2],
309  TABLE_CONST float (*filter)[8][2], int len)
310 {
311  int i;
312  int N = 8;
313  LOCAL_ALIGNED_16(float, temp, [8], [2]);
314 
315  for (i = 0; i < len; i++, in++) {
316  dsp->hybrid_analysis(temp, in, (const float (*)[8][2]) filter, 1, N);
317  out[0][i][0] = temp[6][0];
318  out[0][i][1] = temp[6][1];
319  out[1][i][0] = temp[7][0];
320  out[1][i][1] = temp[7][1];
321  out[2][i][0] = temp[0][0];
322  out[2][i][1] = temp[0][1];
323  out[3][i][0] = temp[1][0];
324  out[3][i][1] = temp[1][1];
325  out[4][i][0] = temp[2][0] + temp[5][0];
326  out[4][i][1] = temp[2][1] + temp[5][1];
327  out[5][i][0] = temp[3][0] + temp[4][0];
328  out[5][i][1] = temp[3][1] + temp[4][1];
329  }
330 }
331 
332 static void hybrid4_8_12_cx(PSDSPContext *dsp,
333  float (*in)[2], float (*out)[32][2],
334  TABLE_CONST float (*filter)[8][2], int N, int len)
335 {
336  int i;
337 
338  for (i = 0; i < len; i++, in++) {
339  dsp->hybrid_analysis(out[0] + i, in, (const float (*)[8][2]) filter, 32, N);
340  }
341 }
342 
343 static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
344  float in[5][44][2], float L[2][38][64],
345  int is34, int len)
346 {
347  int i, j;
348  for (i = 0; i < 5; i++) {
349  for (j = 0; j < 38; j++) {
350  in[i][j+6][0] = L[0][j][i];
351  in[i][j+6][1] = L[1][j][i];
352  }
353  }
354  if (is34) {
355  hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
356  hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
357  hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
358  hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
359  hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
360  dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
361  } else {
362  hybrid6_cx(dsp, in[0], out, f20_0_8, len);
363  hybrid2_re(in[1], out+6, g1_Q2, len, 1);
364  hybrid2_re(in[2], out+8, g1_Q2, len, 0);
365  dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
366  }
367  //update in_buf
368  for (i = 0; i < 5; i++) {
369  memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
370  }
371 }
372 
373 static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
374  float in[91][32][2], int is34, int len)
375 {
376  int i, n;
377  if (is34) {
378  for (n = 0; n < len; n++) {
379  memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
380  memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
381  for (i = 0; i < 12; i++) {
382  out[0][n][0] += in[ i][n][0];
383  out[1][n][0] += in[ i][n][1];
384  }
385  for (i = 0; i < 8; i++) {
386  out[0][n][1] += in[12+i][n][0];
387  out[1][n][1] += in[12+i][n][1];
388  }
389  for (i = 0; i < 4; i++) {
390  out[0][n][2] += in[20+i][n][0];
391  out[1][n][2] += in[20+i][n][1];
392  out[0][n][3] += in[24+i][n][0];
393  out[1][n][3] += in[24+i][n][1];
394  out[0][n][4] += in[28+i][n][0];
395  out[1][n][4] += in[28+i][n][1];
396  }
397  }
398  dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
399  } else {
400  for (n = 0; n < len; n++) {
401  out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
402  in[3][n][0] + in[4][n][0] + in[5][n][0];
403  out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
404  in[3][n][1] + in[4][n][1] + in[5][n][1];
405  out[0][n][1] = in[6][n][0] + in[7][n][0];
406  out[1][n][1] = in[6][n][1] + in[7][n][1];
407  out[0][n][2] = in[8][n][0] + in[9][n][0];
408  out[1][n][2] = in[8][n][1] + in[9][n][1];
409  }
410  dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
411  }
412 }
413 
415 #define DECAY_SLOPE 0.05f
416 static const int NR_PAR_BANDS[] = { 20, 34 };
419 static const int NR_BANDS[] = { 71, 91 };
421 static const int DECAY_CUTOFF[] = { 10, 32 };
423 static const int NR_ALLPASS_BANDS[] = { 30, 50 };
425 static const int SHORT_DELAY_BAND[] = { 42, 62 };
426 
428 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
429 {
430  int b;
431  if (full)
432  b = 9;
433  else {
434  b = 4;
435  par_mapped[10] = 0;
436  }
437  for (; b >= 0; b--) {
438  par_mapped[2*b+1] = par_mapped[2*b] = par[b];
439  }
440 }
441 
442 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
443 {
444  par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
445  par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
446  par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
447  par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
448  par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
449  par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
450  par_mapped[ 6] = par[10];
451  par_mapped[ 7] = par[11];
452  par_mapped[ 8] = ( par[12] + par[13]) / 2;
453  par_mapped[ 9] = ( par[14] + par[15]) / 2;
454  par_mapped[10] = par[16];
455  if (full) {
456  par_mapped[11] = par[17];
457  par_mapped[12] = par[18];
458  par_mapped[13] = par[19];
459  par_mapped[14] = ( par[20] + par[21]) / 2;
460  par_mapped[15] = ( par[22] + par[23]) / 2;
461  par_mapped[16] = ( par[24] + par[25]) / 2;
462  par_mapped[17] = ( par[26] + par[27]) / 2;
463  par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
464  par_mapped[19] = ( par[32] + par[33]) / 2;
465  }
466 }
467 
468 static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
469 {
470  par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
471  par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
472  par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
473  par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
474  par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
475  par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
476  par[ 6] = par[10];
477  par[ 7] = par[11];
478  par[ 8] = ( par[12] + par[13]) * 0.5f;
479  par[ 9] = ( par[14] + par[15]) * 0.5f;
480  par[10] = par[16];
481  par[11] = par[17];
482  par[12] = par[18];
483  par[13] = par[19];
484  par[14] = ( par[20] + par[21]) * 0.5f;
485  par[15] = ( par[22] + par[23]) * 0.5f;
486  par[16] = ( par[24] + par[25]) * 0.5f;
487  par[17] = ( par[26] + par[27]) * 0.5f;
488  par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
489  par[19] = ( par[32] + par[33]) * 0.5f;
490 }
491 
492 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
493 {
494  if (full) {
495  par_mapped[33] = par[9];
496  par_mapped[32] = par[9];
497  par_mapped[31] = par[9];
498  par_mapped[30] = par[9];
499  par_mapped[29] = par[9];
500  par_mapped[28] = par[9];
501  par_mapped[27] = par[8];
502  par_mapped[26] = par[8];
503  par_mapped[25] = par[8];
504  par_mapped[24] = par[8];
505  par_mapped[23] = par[7];
506  par_mapped[22] = par[7];
507  par_mapped[21] = par[7];
508  par_mapped[20] = par[7];
509  par_mapped[19] = par[6];
510  par_mapped[18] = par[6];
511  par_mapped[17] = par[5];
512  par_mapped[16] = par[5];
513  } else {
514  par_mapped[16] = 0;
515  }
516  par_mapped[15] = par[4];
517  par_mapped[14] = par[4];
518  par_mapped[13] = par[4];
519  par_mapped[12] = par[4];
520  par_mapped[11] = par[3];
521  par_mapped[10] = par[3];
522  par_mapped[ 9] = par[2];
523  par_mapped[ 8] = par[2];
524  par_mapped[ 7] = par[2];
525  par_mapped[ 6] = par[2];
526  par_mapped[ 5] = par[1];
527  par_mapped[ 4] = par[1];
528  par_mapped[ 3] = par[1];
529  par_mapped[ 2] = par[0];
530  par_mapped[ 1] = par[0];
531  par_mapped[ 0] = par[0];
532 }
533 
534 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
535 {
536  if (full) {
537  par_mapped[33] = par[19];
538  par_mapped[32] = par[19];
539  par_mapped[31] = par[18];
540  par_mapped[30] = par[18];
541  par_mapped[29] = par[18];
542  par_mapped[28] = par[18];
543  par_mapped[27] = par[17];
544  par_mapped[26] = par[17];
545  par_mapped[25] = par[16];
546  par_mapped[24] = par[16];
547  par_mapped[23] = par[15];
548  par_mapped[22] = par[15];
549  par_mapped[21] = par[14];
550  par_mapped[20] = par[14];
551  par_mapped[19] = par[13];
552  par_mapped[18] = par[12];
553  par_mapped[17] = par[11];
554  }
555  par_mapped[16] = par[10];
556  par_mapped[15] = par[ 9];
557  par_mapped[14] = par[ 9];
558  par_mapped[13] = par[ 8];
559  par_mapped[12] = par[ 8];
560  par_mapped[11] = par[ 7];
561  par_mapped[10] = par[ 6];
562  par_mapped[ 9] = par[ 5];
563  par_mapped[ 8] = par[ 5];
564  par_mapped[ 7] = par[ 4];
565  par_mapped[ 6] = par[ 4];
566  par_mapped[ 5] = par[ 3];
567  par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
568  par_mapped[ 3] = par[ 2];
569  par_mapped[ 2] = par[ 1];
570  par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
571  par_mapped[ 0] = par[ 0];
572 }
573 
574 static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
575 {
576  par[33] = par[19];
577  par[32] = par[19];
578  par[31] = par[18];
579  par[30] = par[18];
580  par[29] = par[18];
581  par[28] = par[18];
582  par[27] = par[17];
583  par[26] = par[17];
584  par[25] = par[16];
585  par[24] = par[16];
586  par[23] = par[15];
587  par[22] = par[15];
588  par[21] = par[14];
589  par[20] = par[14];
590  par[19] = par[13];
591  par[18] = par[12];
592  par[17] = par[11];
593  par[16] = par[10];
594  par[15] = par[ 9];
595  par[14] = par[ 9];
596  par[13] = par[ 8];
597  par[12] = par[ 8];
598  par[11] = par[ 7];
599  par[10] = par[ 6];
600  par[ 9] = par[ 5];
601  par[ 8] = par[ 5];
602  par[ 7] = par[ 4];
603  par[ 6] = par[ 4];
604  par[ 5] = par[ 3];
605  par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
606  par[ 3] = par[ 2];
607  par[ 2] = par[ 1];
608  par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
609  par[ 0] = par[ 0];
610 }
611 
612 static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
613 {
614  LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]);
615  LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
616  float *peak_decay_nrg = ps->peak_decay_nrg;
617  float *power_smooth = ps->power_smooth;
618  float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
619  float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
620  float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
621  const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
622  const float peak_decay_factor = 0.76592833836465f;
623  const float transient_impact = 1.5f;
624  const float a_smooth = 0.25f;
625  int i, k, m, n;
626  int n0 = 0, nL = 32;
627 
628  memset(power, 0, 34 * sizeof(*power));
629 
630  if (is34 != ps->is34bands_old) {
631  memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
632  memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
633  memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
634  memset(ps->delay, 0, sizeof(ps->delay));
635  memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
636  }
637 
638  for (k = 0; k < NR_BANDS[is34]; k++) {
639  int i = k_to_i[k];
640  ps->dsp.add_squares(power[i], s[k], nL - n0);
641  }
642 
643  //Transient detection
644  for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
645  for (n = n0; n < nL; n++) {
646  float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
647  float denom;
648  peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
649  power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
650  peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
651  denom = transient_impact * peak_decay_diff_smooth[i];
652  transient_gain[i][n] = (denom > power_smooth[i]) ?
653  power_smooth[i] / denom : 1.0f;
654  }
655  }
656 
657  //Decorrelation and transient reduction
658  // PS_AP_LINKS - 1
659  // -----
660  // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
661  //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
662  // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
663  // m = 0
664  //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
665  for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
666  int b = k_to_i[k];
667  float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
668  g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
669  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
670  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
671  for (m = 0; m < PS_AP_LINKS; m++) {
672  memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
673  }
674  ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
675  phi_fract[is34][k],
676  (const float (*)[2]) Q_fract_allpass[is34][k],
677  transient_gain[b], g_decay_slope, nL - n0);
678  }
679  for (; k < SHORT_DELAY_BAND[is34]; k++) {
680  int i = k_to_i[k];
681  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
682  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
683  //H = delay 14
684  ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
685  transient_gain[i], nL - n0);
686  }
687  for (; k < NR_BANDS[is34]; k++) {
688  int i = k_to_i[k];
689  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
690  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
691  //H = delay 1
692  ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
693  transient_gain[i], nL - n0);
694  }
695 }
696 
697 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
698  int8_t (*par)[PS_MAX_NR_IIDICC],
699  int num_par, int num_env, int full)
700 {
701  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
702  int e;
703  if (num_par == 20 || num_par == 11) {
704  for (e = 0; e < num_env; e++) {
705  map_idx_20_to_34(par_mapped[e], par[e], full);
706  }
707  } else if (num_par == 10 || num_par == 5) {
708  for (e = 0; e < num_env; e++) {
709  map_idx_10_to_34(par_mapped[e], par[e], full);
710  }
711  } else {
712  *p_par_mapped = par;
713  }
714 }
715 
716 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
717  int8_t (*par)[PS_MAX_NR_IIDICC],
718  int num_par, int num_env, int full)
719 {
720  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
721  int e;
722  if (num_par == 34 || num_par == 17) {
723  for (e = 0; e < num_env; e++) {
724  map_idx_34_to_20(par_mapped[e], par[e], full);
725  }
726  } else if (num_par == 10 || num_par == 5) {
727  for (e = 0; e < num_env; e++) {
728  map_idx_10_to_20(par_mapped[e], par[e], full);
729  }
730  } else {
731  *p_par_mapped = par;
732  }
733 }
734 
735 static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
736 {
737  int e, b, k;
738 
739  float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
740  float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
741  float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
742  float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
743  int8_t *opd_hist = ps->opd_hist;
744  int8_t *ipd_hist = ps->ipd_hist;
745  int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
746  int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
747  int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
748  int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
749  int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
750  int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
751  int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
752  int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
753  const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
754  TABLE_CONST float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
755 
756  //Remapping
757  if (ps->num_env_old) {
758  memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
759  memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
760  memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
761  memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
762  memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
763  memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
764  memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
765  memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
766  }
767 
768  if (is34) {
769  remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
770  remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
771  if (ps->enable_ipdopd) {
772  remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
773  remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
774  }
775  if (!ps->is34bands_old) {
776  map_val_20_to_34(H11[0][0]);
777  map_val_20_to_34(H11[1][0]);
778  map_val_20_to_34(H12[0][0]);
779  map_val_20_to_34(H12[1][0]);
780  map_val_20_to_34(H21[0][0]);
781  map_val_20_to_34(H21[1][0]);
782  map_val_20_to_34(H22[0][0]);
783  map_val_20_to_34(H22[1][0]);
784  ipdopd_reset(ipd_hist, opd_hist);
785  }
786  } else {
787  remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
788  remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
789  if (ps->enable_ipdopd) {
790  remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
791  remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
792  }
793  if (ps->is34bands_old) {
794  map_val_34_to_20(H11[0][0]);
795  map_val_34_to_20(H11[1][0]);
796  map_val_34_to_20(H12[0][0]);
797  map_val_34_to_20(H12[1][0]);
798  map_val_34_to_20(H21[0][0]);
799  map_val_34_to_20(H21[1][0]);
800  map_val_34_to_20(H22[0][0]);
801  map_val_34_to_20(H22[1][0]);
802  ipdopd_reset(ipd_hist, opd_hist);
803  }
804  }
805 
806  //Mixing
807  for (e = 0; e < ps->num_env; e++) {
808  for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
809  float h11, h12, h21, h22;
810  h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
811  h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
812  h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
813  h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
814  if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
815  //The spec say says to only run this smoother when enable_ipdopd
816  //is set but the reference decoder appears to run it constantly
817  float h11i, h12i, h21i, h22i;
818  float ipd_adj_re, ipd_adj_im;
819  int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
820  int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
821  float opd_re = pd_re_smooth[opd_idx];
822  float opd_im = pd_im_smooth[opd_idx];
823  float ipd_re = pd_re_smooth[ipd_idx];
824  float ipd_im = pd_im_smooth[ipd_idx];
825  opd_hist[b] = opd_idx & 0x3F;
826  ipd_hist[b] = ipd_idx & 0x3F;
827 
828  ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
829  ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
830  h11i = h11 * opd_im;
831  h11 = h11 * opd_re;
832  h12i = h12 * ipd_adj_im;
833  h12 = h12 * ipd_adj_re;
834  h21i = h21 * opd_im;
835  h21 = h21 * opd_re;
836  h22i = h22 * ipd_adj_im;
837  h22 = h22 * ipd_adj_re;
838  H11[1][e+1][b] = h11i;
839  H12[1][e+1][b] = h12i;
840  H21[1][e+1][b] = h21i;
841  H22[1][e+1][b] = h22i;
842  }
843  H11[0][e+1][b] = h11;
844  H12[0][e+1][b] = h12;
845  H21[0][e+1][b] = h21;
846  H22[0][e+1][b] = h22;
847  }
848  for (k = 0; k < NR_BANDS[is34]; k++) {
849  float h[2][4];
850  float h_step[2][4];
851  int start = ps->border_position[e];
852  int stop = ps->border_position[e+1];
853  float width = 1.f / (stop - start);
854  b = k_to_i[k];
855  h[0][0] = H11[0][e][b];
856  h[0][1] = H12[0][e][b];
857  h[0][2] = H21[0][e][b];
858  h[0][3] = H22[0][e][b];
859  if (!PS_BASELINE && ps->enable_ipdopd) {
860  //Is this necessary? ps_04_new seems unchanged
861  if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
862  h[1][0] = -H11[1][e][b];
863  h[1][1] = -H12[1][e][b];
864  h[1][2] = -H21[1][e][b];
865  h[1][3] = -H22[1][e][b];
866  } else {
867  h[1][0] = H11[1][e][b];
868  h[1][1] = H12[1][e][b];
869  h[1][2] = H21[1][e][b];
870  h[1][3] = H22[1][e][b];
871  }
872  }
873  //Interpolation
874  h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
875  h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
876  h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
877  h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
878  if (!PS_BASELINE && ps->enable_ipdopd) {
879  h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
880  h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
881  h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
882  h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
883  }
885  l[k] + start + 1, r[k] + start + 1,
886  h, h_step, stop - start);
887  }
888  }
889 }
890 
891 int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
892 {
893  LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]);
894  LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]);
895  const int len = 32;
896  int is34 = ps->is34bands;
897 
898  top += NR_BANDS[is34] - 64;
899  memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
900  if (top < NR_ALLPASS_BANDS[is34])
901  memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
902 
903  hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
904  decorrelation(ps, Rbuf, (const float (*)[32][2]) Lbuf, is34);
905  stereo_processing(ps, Lbuf, Rbuf, is34);
906  hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
907  hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
908 
909  return 0;
910 }
911 
912 #define PS_INIT_VLC_STATIC(num, size) \
913  INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
914  ps_tmp[num].ps_bits, 1, 1, \
915  ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
916  size);
917 
918 #define PS_VLC_ROW(name) \
919  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
920 
921 av_cold void ff_ps_init(void) {
922  // Syntax initialization
923  static const struct {
924  const void *ps_codes, *ps_bits;
925  const unsigned int table_size, elem_size;
926  } ps_tmp[] = {
937  };
938 
939  PS_INIT_VLC_STATIC(0, 1544);
940  PS_INIT_VLC_STATIC(1, 832);
941  PS_INIT_VLC_STATIC(2, 1024);
942  PS_INIT_VLC_STATIC(3, 1036);
943  PS_INIT_VLC_STATIC(4, 544);
944  PS_INIT_VLC_STATIC(5, 544);
945  PS_INIT_VLC_STATIC(6, 512);
946  PS_INIT_VLC_STATIC(7, 512);
947  PS_INIT_VLC_STATIC(8, 512);
948  PS_INIT_VLC_STATIC(9, 512);
949 
950  ps_tableinit();
951 }
952 
954 {
955  ff_psdsp_init(&ps->dsp);
956 }
static void hybrid4_8_12_cx(PSDSPContext *dsp, float(*in)[2], float(*out)[32][2], TABLE_CONST float(*filter)[8][2], int N, int len)
Definition: aacps.c:332
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:534
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
Definition: aacps.c:891
int is34bands
Definition: aacps.h:61
int nr_iid_par
Definition: aacps.h:45
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:240
av_cold void ff_psdsp_init(PSDSPContext *s)
Definition: aacpsdsp.c:201
void(* decorrelate)(float(*out)[2], float(*delay)[2], float(*ap_delay)[PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2], const float phi_fract[2], const float(*Q_fract)[2], const float *transient_gain, float g_decay_slope, int len)
Definition: aacpsdsp.h:39
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:199
#define R
Definition: huffyuv.h:51
int enable_icc
Definition: aacps.h:47
void(* hybrid_analysis_ileave)(float(*out)[32][2], float L[2][38][64], int i, int len)
Definition: aacpsdsp.h:35
float H12[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:71
static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
Definition: aacps.c:343
static const int NR_BANDS[]
Number of frequency bands that can be addressed by the sub subband index, k.
Definition: aacps.c:419
float delay[PS_MAX_SSB][PS_QMF_TIME_SLOTS+PS_MAX_DELAY][2]
Definition: aacps.h:65
static const int8_t nr_iidopd_par_tab[]
Definition: aacps.c:47
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
static const int8_t huff_offset[]
Definition: aacpsdata.c:136
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
Table 8.46.
Definition: aacps.c:428
float in_buf[5][44][2]
Definition: aacps.h:64
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:442
void(* mul_pair_single)(float(*dst)[2], float(*src0)[2], float *src1, int n)
Definition: aacpsdsp.h:30
int enable_ext
Definition: aacps.h:50
static void hybrid6_cx(PSDSPContext *dsp, float(*in)[2], float(*out)[32][2], TABLE_CONST float(*filter)[8][2], int len)
Split one subband into 6 subsubbands with a complex filter.
Definition: aacps.c:308
int enable_ipdopd
Definition: aacps.h:54
float power_smooth[34]
Definition: aacps.h:68
static float pd_im_smooth[8 *8 *8]
static const int8_t k_to_i_34[]
Table 8.49.
Definition: aacpsdata.c:152
float peak_decay_diff_smooth[34]
Definition: aacps.h:69
static float f34_1_8[8][8][2]
#define PS_INIT_VLC_STATIC(num, size)
Definition: aacps.c:912
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION)
Definition: aacps.c:73
void(* stereo_interpolate[2])(float(*l)[2], float(*r)[2], float h[2][4], float h_step[2][4], int len)
Definition: aacpsdsp.h:45
#define av_cold
Definition: attributes.h:66
int enable_iid
Definition: aacps.h:43
#define PS_MAX_AP_DELAY
Definition: aacps.h:39
#define b
Definition: input.c:52
static void decorrelation(PSContext *ps, float(*out)[32][2], const float(*s)[32][2], int is34)
Definition: aacps.c:612
static float f20_0_8[8][8][2]
static void remap34(int8_t(**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t(*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full)
Definition: aacps.c:697
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:194
static float phi_fract[2][50][2]
int num_env_old
Definition: aacps.h:52
bitstream reader API header.
const uint8_t ff_log2_tab[256]
Definition: log2_tab.c:21
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:492
#define DECAY_SLOPE
All-pass filter decay slope.
Definition: aacps.c:415
#define r
Definition: input.c:51
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
#define PS_MAX_NR_IIDICC
Definition: aacps.h:32
int8_t icc_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-Channel Coherence Parameters.
Definition: aacps.h:57
static float f34_2_4[4][8][2]
int iid_quant
Definition: aacps.h:44
void(* hybrid_synthesis_deint)(float out[2][38][64], float(*in)[32][2], int i, int len)
Definition: aacpsdsp.h:37
static int read_iid_data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, int8_t(*iid)[34], int table_idx, int e, int dt)
\ * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \ * Inter-channel Phase Differen...
Definition: aacps.c:117
static const int SHORT_DELAY_BAND[]
First stereo band using the short one sample delay.
Definition: aacps.c:425
#define PS_BASELINE
Operate in Baseline PS mode.
Definition: aacps.c:32
av_cold void ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:953
void(* hybrid_analysis)(float(*out)[2], float(*in)[2], const float(*filter)[8][2], int stride, int n)
Definition: aacpsdsp.h:32
#define PS_VLC_ROW(name)
Definition: aacps.c:918
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
#define FFMAX(a, b)
Definition: common.h:55
int num_env
Definition: aacps.h:53
Definition: get_bits.h:64
int nr_icc_par
Definition: aacps.h:49
static int read_icc_data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, int8_t(*icc)[34], int table_idx, int e, int dt)
\ * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \ * Inter-channel Phase Differen...
Definition: aacps.c:118
float H11[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:70
common internal API header
static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
Definition: mpegaudioenc.c:307
#define PS_MAX_NUM_ENV
Definition: aacps.h:31
static const float g1_Q2[]
Definition: aacpsdata.c:160
static float HA[46][8][4]
static int read_ipdopd_data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, int8_t(*ipdopd)[34], int table_idx, int e, int dt)
\ * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \ * Inter-channel Phase Differen...
Definition: aacps.c:119
int8_t ipd_hist[PS_MAX_NR_IIDICC]
Definition: aacps.h:75
#define FFABS(a)
Definition: common.h:52
static float pd_re_smooth[8 *8 *8]
static const int huff_iid[]
Definition: aacps.c:64
int8_t ipd_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-channel Phase Difference Parameters.
Definition: aacps.h:59
static const int8_t nr_iidicc_par_tab[]
Definition: aacps.c:43
float ap_delay[PS_MAX_AP_BANDS][PS_AP_LINKS][PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2]
Definition: aacps.h:66
#define L(x)
Definition: vp56_arith.h:36
av_cold void ff_ps_init(void)
Definition: aacps.c:921
#define PS_MAX_DELAY
Definition: aacps.h:37
PSDSPContext dsp
Definition: aacps.h:76
int start
Definition: aacps.h:42
NULL
Definition: eval.c:55
static int width
Definition: utils.c:156
static const int NR_ALLPASS_BANDS[]
Number of all-pass filer bands.
Definition: aacps.c:423
Libavcodec external API header.
static const int8_t num_env_tab[2][4]
Definition: aacps.c:38
main external API structure.
Definition: avcodec.h:1050
float peak_decay_nrg[34]
Definition: aacps.h:67
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:271
int8_t iid_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-channel Intensity Difference Parameters.
Definition: aacps.h:56
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:296
static const int NR_PAR_BANDS[]
Number of frequency bands that can be addressed by the parameter index, b(k)
Definition: aacps.c:417
static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
Definition: aacps.c:468
int is34bands_old
Definition: aacps.h:62
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:263
static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64], float in[91][32][2], int is34, int len)
Definition: aacps.c:373
static void ps_tableinit(void)
static TABLE_CONST float Q_fract_allpass[2][50][3][2]
static float HB[46][8][4]
int8_t opd_hist[PS_MAX_NR_IIDICC]
Definition: aacps.h:74
int border_position[PS_MAX_NUM_ENV+1]
Definition: aacps.h:55
static VLC vlc_ps[10]
Definition: aacps.c:71
static void hybrid2_re(float(*in)[2], float(*out)[32][2], const float filter[8], int len, int reverse)
Split one subband into 2 subsubbands with a symmetric real filter.
Definition: aacps.c:288
static float f34_0_12[12][8][2]
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
#define PS_AP_LINKS
Definition: aacps.h:38
common internal and external API header
static const int8_t k_to_i_20[]
Table 8.48.
Definition: aacpsdata.c:145
float H22[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:73
#define numQMFSlots
Definition: aacps.c:36
static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
Definition: aacps.c:142
#define PS_QMF_TIME_SLOTS
Definition: aacps.h:36
static void remap20(int8_t(**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t(*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full)
Definition: aacps.c:716
int len
void(* add_squares)(float *dst, const float(*src)[2], int n)
Definition: aacpsdsp.h:29
static const int DECAY_CUTOFF[]
Start frequency band for the all-pass filter decay slope.
Definition: aacps.c:421
#define PS_MAX_NR_IPDOPD
Definition: aacps.h:33
static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
Definition: aacps.c:121
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:114
int frame_class
Definition: aacps.h:51
static void stereo_processing(PSContext *ps, float(*l)[32][2], float(*r)[32][2], int is34)
Definition: aacps.c:735
int nr_ipdopd_par
Definition: aacps.h:46
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:151
#define TABLE_CONST
int8_t opd_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Overall Phase Difference Parameters.
Definition: aacps.h:60
static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
Definition: aacps.c:574
int icc_mode
Definition: aacps.h:48
Definition: vf_drawbox.c:37
float H21[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:72