LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72  Microsoft library. Some macros provided below to replace these functions */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #if HWLOC_API_VERSION >= 0x00020000
104 // hwloc 2.0 changed type of depth of object from unsigned to int
105 typedef int kmp_hwloc_depth_t;
106 #else
107 typedef unsigned int kmp_hwloc_depth_t;
108 #endif
109 #endif
110 
111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
112 #include <xmmintrin.h>
113 #endif
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #include "kmp_barrier.h"
119 #if USE_DEBUGGER
120 #include "kmp_debugger.h"
121 #endif
122 #include "kmp_i18n.h"
123 
124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125 
126 #include "kmp_wrapper_malloc.h"
127 #if KMP_OS_UNIX
128 #include <unistd.h>
129 #if !defined NSIG && defined _NSIG
130 #define NSIG _NSIG
131 #endif
132 #endif
133 
134 #if KMP_OS_LINUX
135 #pragma weak clock_gettime
136 #endif
137 
138 #if OMPT_SUPPORT
139 #include "ompt-internal.h"
140 #endif
141 
142 #if OMPD_SUPPORT
143 #include "ompd-specific.h"
144 #endif
145 
146 #ifndef UNLIKELY
147 #define UNLIKELY(x) (x)
148 #endif
149 
150 // Affinity format function
151 #include "kmp_str.h"
152 
153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
155 // free lists of limited size.
156 #ifndef USE_FAST_MEMORY
157 #define USE_FAST_MEMORY 3
158 #endif
159 
160 #ifndef KMP_NESTED_HOT_TEAMS
161 #define KMP_NESTED_HOT_TEAMS 0
162 #define USE_NESTED_HOT_ARG(x)
163 #else
164 #if KMP_NESTED_HOT_TEAMS
165 #define USE_NESTED_HOT_ARG(x) , x
166 #else
167 #define USE_NESTED_HOT_ARG(x)
168 #endif
169 #endif
170 
171 // Assume using BGET compare_exchange instruction instead of lock by default.
172 #ifndef USE_CMP_XCHG_FOR_BGET
173 #define USE_CMP_XCHG_FOR_BGET 1
174 #endif
175 
176 // Test to see if queuing lock is better than bootstrap lock for bget
177 // #ifndef USE_QUEUING_LOCK_FOR_BGET
178 // #define USE_QUEUING_LOCK_FOR_BGET
179 // #endif
180 
181 #define KMP_NSEC_PER_SEC 1000000000L
182 #define KMP_USEC_PER_SEC 1000000L
183 
192 enum {
197  /* 0x04 is no longer used */
206  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209 
210  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212 
224  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229 };
230 
234 typedef struct ident {
235  kmp_int32 reserved_1;
236  kmp_int32 flags;
238  kmp_int32 reserved_2;
239 #if USE_ITT_BUILD
240 /* but currently used for storing region-specific ITT */
241 /* contextual information. */
242 #endif /* USE_ITT_BUILD */
243  kmp_int32 reserved_3;
244  char const *psource;
248  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249  kmp_int32 get_openmp_version() {
250  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251  }
257 // Some forward declarations.
258 typedef union kmp_team kmp_team_t;
259 typedef struct kmp_taskdata kmp_taskdata_t;
260 typedef union kmp_task_team kmp_task_team_t;
261 typedef union kmp_team kmp_team_p;
262 typedef union kmp_info kmp_info_p;
263 typedef union kmp_root kmp_root_p;
264 
265 template <bool C = false, bool S = true> class kmp_flag_32;
266 template <bool C = false, bool S = true> class kmp_flag_64;
267 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268 class kmp_flag_oncore;
269 
270 #ifdef __cplusplus
271 extern "C" {
272 #endif
273 
274 /* ------------------------------------------------------------------------ */
275 
276 /* Pack two 32-bit signed integers into a 64-bit signed integer */
277 /* ToDo: Fix word ordering for big-endian machines. */
278 #define KMP_PACK_64(HIGH_32, LOW_32) \
279  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280 
281 // Generic string manipulation macros. Assume that _x is of type char *
282 #define SKIP_WS(_x) \
283  { \
284  while (*(_x) == ' ' || *(_x) == '\t') \
285  (_x)++; \
286  }
287 #define SKIP_DIGITS(_x) \
288  { \
289  while (*(_x) >= '0' && *(_x) <= '9') \
290  (_x)++; \
291  }
292 #define SKIP_TOKEN(_x) \
293  { \
294  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296  (_x)++; \
297  }
298 #define SKIP_TO(_x, _c) \
299  { \
300  while (*(_x) != '\0' && *(_x) != (_c)) \
301  (_x)++; \
302  }
303 
304 /* ------------------------------------------------------------------------ */
305 
306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308 
309 /* ------------------------------------------------------------------------ */
310 /* Enumeration types */
311 
312 enum kmp_state_timer {
313  ts_stop,
314  ts_start,
315  ts_pause,
316 
317  ts_last_state
318 };
319 
320 enum dynamic_mode {
321  dynamic_default,
322 #ifdef USE_LOAD_BALANCE
323  dynamic_load_balance,
324 #endif /* USE_LOAD_BALANCE */
325  dynamic_random,
326  dynamic_thread_limit,
327  dynamic_max
328 };
329 
330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
331  * not include it here */
332 #ifndef KMP_SCHED_TYPE_DEFINED
333 #define KMP_SCHED_TYPE_DEFINED
334 typedef enum kmp_sched {
335  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336  // Note: need to adjust __kmp_sch_map global array in case enum is changed
337  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341  kmp_sched_upper_std = 5, // upper bound for standard schedules
342  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344 #if KMP_STATIC_STEAL_ENABLED
345  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346 #endif
347  kmp_sched_upper,
348  kmp_sched_default = kmp_sched_static, // default scheduling
349  kmp_sched_monotonic = 0x80000000
350 } kmp_sched_t;
351 #endif
352 
357 enum sched_type : kmp_int32 {
359  kmp_sch_static_chunked = 33,
361  kmp_sch_dynamic_chunked = 35,
363  kmp_sch_runtime = 37,
365  kmp_sch_trapezoidal = 39,
366 
367  /* accessible only through KMP_SCHEDULE environment variable */
368  kmp_sch_static_greedy = 40,
369  kmp_sch_static_balanced = 41,
370  /* accessible only through KMP_SCHEDULE environment variable */
371  kmp_sch_guided_iterative_chunked = 42,
372  kmp_sch_guided_analytical_chunked = 43,
373  /* accessible only through KMP_SCHEDULE environment variable */
374  kmp_sch_static_steal = 44,
375 
376  /* static with chunk adjustment (e.g., simd) */
377  kmp_sch_static_balanced_chunked = 45,
381  /* accessible only through KMP_SCHEDULE environment variable */
385  kmp_ord_static_chunked = 65,
387  kmp_ord_dynamic_chunked = 67,
388  kmp_ord_guided_chunked = 68,
389  kmp_ord_runtime = 69,
391  kmp_ord_trapezoidal = 71,
394  /* Schedules for Distribute construct */
398  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399  single iteration/chunk, even if the loop is serialized. For the schedule
400  types listed above, the entire iteration vector is returned if the loop is
401  serialized. This doesn't work for gcc/gcomp sections. */
402  kmp_nm_lower = 160,
404  kmp_nm_static_chunked =
405  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407  kmp_nm_dynamic_chunked = 163,
409  kmp_nm_runtime = 165,
410  kmp_nm_auto = 166,
411  kmp_nm_trapezoidal = 167,
412 
413  /* accessible only through KMP_SCHEDULE environment variable */
414  kmp_nm_static_greedy = 168,
415  kmp_nm_static_balanced = 169,
416  /* accessible only through KMP_SCHEDULE environment variable */
417  kmp_nm_guided_iterative_chunked = 170,
418  kmp_nm_guided_analytical_chunked = 171,
419  kmp_nm_static_steal =
420  172, /* accessible only through OMP_SCHEDULE environment variable */
421 
422  kmp_nm_ord_static_chunked = 193,
424  kmp_nm_ord_dynamic_chunked = 195,
425  kmp_nm_ord_guided_chunked = 196,
426  kmp_nm_ord_runtime = 197,
428  kmp_nm_ord_trapezoidal = 199,
431  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432  we need to distinguish the three possible cases (no modifier, monotonic
433  modifier, nonmonotonic modifier), we need separate bits for each modifier.
434  The absence of monotonic does not imply nonmonotonic, especially since 4.5
435  says that the behaviour of the "no modifier" case is implementation defined
436  in 4.5, but will become "nonmonotonic" in 5.0.
437 
438  Since we're passing a full 32 bit value, we can use a couple of high bits
439  for these flags; out of paranoia we avoid the sign bit.
440 
441  These modifiers can be or-ed into non-static schedules by the compiler to
442  pass the additional information. They will be stripped early in the
443  processing in __kmp_dispatch_init when setting up schedules, so most of the
444  code won't ever see schedules with these bits set. */
446  (1 << 29),
448  (1 << 30),
450 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
451  (enum sched_type)( \
453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
456  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457 #define SCHEDULE_GET_MODIFIERS(s) \
458  ((enum sched_type)( \
459  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460 #define SCHEDULE_SET_MODIFIERS(s, m) \
461  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462 #define SCHEDULE_NONMONOTONIC 0
463 #define SCHEDULE_MONOTONIC 1
464 
466 };
467 
468 // Apply modifiers on internal kind to standard kind
469 static inline void
470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471  enum sched_type internal_kind) {
472  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474  }
475 }
476 
477 // Apply modifiers on standard kind to internal kind
478 static inline void
479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480  enum sched_type *internal_kind) {
481  if ((int)kind & (int)kmp_sched_monotonic) {
482  *internal_kind = (enum sched_type)((int)*internal_kind |
484  }
485 }
486 
487 // Get standard schedule without modifiers
488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490 }
491 
492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493 typedef union kmp_r_sched {
494  struct {
495  enum sched_type r_sched_type;
496  int chunk;
497  };
498  kmp_int64 sched;
499 } kmp_r_sched_t;
500 
501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502 // internal schedule types
503 
504 enum library_type {
505  library_none,
506  library_serial,
507  library_turnaround,
508  library_throughput
509 };
510 
511 #if KMP_OS_LINUX
512 enum clock_function_type {
513  clock_function_gettimeofday,
514  clock_function_clock_gettime
515 };
516 #endif /* KMP_OS_LINUX */
517 
518 #if KMP_MIC_SUPPORTED
519 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520 #endif
521 
522 /* -- fast reduction stuff ------------------------------------------------ */
523 
524 #undef KMP_FAST_REDUCTION_BARRIER
525 #define KMP_FAST_REDUCTION_BARRIER 1
526 
527 #undef KMP_FAST_REDUCTION_CORE_DUO
528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
529 #define KMP_FAST_REDUCTION_CORE_DUO 1
530 #endif
531 
532 enum _reduction_method {
533  reduction_method_not_defined = 0,
534  critical_reduce_block = (1 << 8),
535  atomic_reduce_block = (2 << 8),
536  tree_reduce_block = (3 << 8),
537  empty_reduce_block = (4 << 8)
538 };
539 
540 // Description of the packed_reduction_method variable:
541 // The packed_reduction_method variable consists of two enum types variables
542 // that are packed together into 0-th byte and 1-st byte:
543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544 // barrier that will be used in fast reduction: bs_plain_barrier or
545 // bs_reduction_barrier
546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547 // be used in fast reduction;
548 // Reduction method is of 'enum _reduction_method' type and it's defined the way
549 // so that the bits of 0-th byte are empty, so no need to execute a shift
550 // instruction while packing/unpacking
551 
552 #if KMP_FAST_REDUCTION_BARRIER
553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554  ((reduction_method) | (barrier_type))
555 
556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558 
559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561 #else
562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563  (reduction_method)
564 
565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566  (packed_reduction_method)
567 
568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569 #endif
570 
571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573  (which_reduction_block))
574 
575 #if KMP_FAST_REDUCTION_BARRIER
576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578 
579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581 #endif
582 
583 typedef int PACKED_REDUCTION_METHOD_T;
584 
585 /* -- end of fast reduction stuff ----------------------------------------- */
586 
587 #if KMP_OS_WINDOWS
588 #define USE_CBLKDATA
589 #if KMP_MSVC_COMPAT
590 #pragma warning(push)
591 #pragma warning(disable : 271 310)
592 #endif
593 #include <windows.h>
594 #if KMP_MSVC_COMPAT
595 #pragma warning(pop)
596 #endif
597 #endif
598 
599 #if KMP_OS_UNIX
600 #include <dlfcn.h>
601 #include <pthread.h>
602 #endif
603 
604 enum kmp_hw_t : int {
605  KMP_HW_UNKNOWN = -1,
606  KMP_HW_SOCKET = 0,
607  KMP_HW_PROC_GROUP,
608  KMP_HW_NUMA,
609  KMP_HW_DIE,
610  KMP_HW_LLC,
611  KMP_HW_L3,
612  KMP_HW_TILE,
613  KMP_HW_MODULE,
614  KMP_HW_L2,
615  KMP_HW_L1,
616  KMP_HW_CORE,
617  KMP_HW_THREAD,
618  KMP_HW_LAST
619 };
620 
621 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
622  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
623 #define KMP_ASSERT_VALID_HW_TYPE(type) \
624  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
625 
626 #define KMP_FOREACH_HW_TYPE(type) \
627  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
628  type = (kmp_hw_t)((int)type + 1))
629 
630 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
631 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
632 
633 /* Only Linux* OS and Windows* OS support thread affinity. */
634 #if KMP_AFFINITY_SUPPORTED
635 
636 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
637 #if KMP_OS_WINDOWS
638 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
639 typedef struct GROUP_AFFINITY {
640  KAFFINITY Mask;
641  WORD Group;
642  WORD Reserved[3];
643 } GROUP_AFFINITY;
644 #endif /* _MSC_VER < 1600 */
645 #if KMP_GROUP_AFFINITY
646 extern int __kmp_num_proc_groups;
647 #else
648 static const int __kmp_num_proc_groups = 1;
649 #endif /* KMP_GROUP_AFFINITY */
650 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
651 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
652 
653 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
654 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
655 
656 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
657 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
658 
659 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
660  GROUP_AFFINITY *);
661 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
662 #endif /* KMP_OS_WINDOWS */
663 
664 #if KMP_USE_HWLOC
665 extern hwloc_topology_t __kmp_hwloc_topology;
666 extern int __kmp_hwloc_error;
667 #endif
668 
669 extern size_t __kmp_affin_mask_size;
670 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
671 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
672 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
673 #define KMP_CPU_SET_ITERATE(i, mask) \
674  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
675 #define KMP_CPU_SET(i, mask) (mask)->set(i)
676 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
677 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
678 #define KMP_CPU_ZERO(mask) (mask)->zero()
679 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
680 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
681 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
682 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
683 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
684 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
685 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
686 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
687 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
688 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
689 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
690 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
691  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
692 #define KMP_CPU_FREE_ARRAY(arr, n) \
693  __kmp_affinity_dispatch->deallocate_mask_array(arr)
694 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
695 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
696 #define __kmp_get_system_affinity(mask, abort_bool) \
697  (mask)->get_system_affinity(abort_bool)
698 #define __kmp_set_system_affinity(mask, abort_bool) \
699  (mask)->set_system_affinity(abort_bool)
700 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
701 
702 class KMPAffinity {
703 public:
704  class Mask {
705  public:
706  void *operator new(size_t n);
707  void operator delete(void *p);
708  void *operator new[](size_t n);
709  void operator delete[](void *p);
710  virtual ~Mask() {}
711  // Set bit i to 1
712  virtual void set(int i) {}
713  // Return bit i
714  virtual bool is_set(int i) const { return false; }
715  // Set bit i to 0
716  virtual void clear(int i) {}
717  // Zero out entire mask
718  virtual void zero() {}
719  // Copy src into this mask
720  virtual void copy(const Mask *src) {}
721  // this &= rhs
722  virtual void bitwise_and(const Mask *rhs) {}
723  // this |= rhs
724  virtual void bitwise_or(const Mask *rhs) {}
725  // this = ~this
726  virtual void bitwise_not() {}
727  // API for iterating over an affinity mask
728  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
729  virtual int begin() const { return 0; }
730  virtual int end() const { return 0; }
731  virtual int next(int previous) const { return 0; }
732 #if KMP_OS_WINDOWS
733  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
734 #endif
735  // Set the system's affinity to this affinity mask's value
736  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
737  // Set this affinity mask to the current system affinity
738  virtual int get_system_affinity(bool abort_on_error) { return -1; }
739  // Only 1 DWORD in the mask should have any procs set.
740  // Return the appropriate index, or -1 for an invalid mask.
741  virtual int get_proc_group() const { return -1; }
742  };
743  void *operator new(size_t n);
744  void operator delete(void *p);
745  // Need virtual destructor
746  virtual ~KMPAffinity() = default;
747  // Determine if affinity is capable
748  virtual void determine_capable(const char *env_var) {}
749  // Bind the current thread to os proc
750  virtual void bind_thread(int proc) {}
751  // Factory functions to allocate/deallocate a mask
752  virtual Mask *allocate_mask() { return nullptr; }
753  virtual void deallocate_mask(Mask *m) {}
754  virtual Mask *allocate_mask_array(int num) { return nullptr; }
755  virtual void deallocate_mask_array(Mask *m) {}
756  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
757  static void pick_api();
758  static void destroy_api();
759  enum api_type {
760  NATIVE_OS
761 #if KMP_USE_HWLOC
762  ,
763  HWLOC
764 #endif
765  };
766  virtual api_type get_api_type() const {
767  KMP_ASSERT(0);
768  return NATIVE_OS;
769  }
770 
771 private:
772  static bool picked_api;
773 };
774 
775 typedef KMPAffinity::Mask kmp_affin_mask_t;
776 extern KMPAffinity *__kmp_affinity_dispatch;
777 
778 // Declare local char buffers with this size for printing debug and info
779 // messages, using __kmp_affinity_print_mask().
780 #define KMP_AFFIN_MASK_PRINT_LEN 1024
781 
782 enum affinity_type {
783  affinity_none = 0,
784  affinity_physical,
785  affinity_logical,
786  affinity_compact,
787  affinity_scatter,
788  affinity_explicit,
789  affinity_balanced,
790  affinity_disabled, // not used outsize the env var parser
791  affinity_default
792 };
793 
794 enum affinity_top_method {
795  affinity_top_method_all = 0, // try all (supported) methods, in order
796 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
797  affinity_top_method_apicid,
798  affinity_top_method_x2apicid,
799  affinity_top_method_x2apicid_1f,
800 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
801  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
802 #if KMP_GROUP_AFFINITY
803  affinity_top_method_group,
804 #endif /* KMP_GROUP_AFFINITY */
805  affinity_top_method_flat,
806 #if KMP_USE_HWLOC
807  affinity_top_method_hwloc,
808 #endif
809  affinity_top_method_default
810 };
811 
812 #define affinity_respect_mask_default (-1)
813 
814 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
815 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */
816 extern int __kmp_affinity_gran_levels; /* corresponding int value */
817 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
818 extern enum affinity_top_method __kmp_affinity_top_method;
819 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
820 extern int __kmp_affinity_offset; /* Affinity offset value */
821 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
822 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
823 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
824 extern char *__kmp_affinity_proclist; /* proc ID list */
825 extern kmp_affin_mask_t *__kmp_affinity_masks;
826 extern unsigned __kmp_affinity_num_masks;
827 extern void __kmp_affinity_bind_thread(int which);
828 
829 extern kmp_affin_mask_t *__kmp_affin_fullMask;
830 extern char *__kmp_cpuinfo_file;
831 
832 #endif /* KMP_AFFINITY_SUPPORTED */
833 
834 // This needs to be kept in sync with the values in omp.h !!!
835 typedef enum kmp_proc_bind_t {
836  proc_bind_false = 0,
837  proc_bind_true,
838  proc_bind_primary,
839  proc_bind_close,
840  proc_bind_spread,
841  proc_bind_intel, // use KMP_AFFINITY interface
842  proc_bind_default
843 } kmp_proc_bind_t;
844 
845 typedef struct kmp_nested_proc_bind_t {
846  kmp_proc_bind_t *bind_types;
847  int size;
848  int used;
849 } kmp_nested_proc_bind_t;
850 
851 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
852 
853 extern int __kmp_display_affinity;
854 extern char *__kmp_affinity_format;
855 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
856 #if OMPT_SUPPORT
857 extern int __kmp_tool;
858 extern char *__kmp_tool_libraries;
859 #endif // OMPT_SUPPORT
860 
861 #if KMP_AFFINITY_SUPPORTED
862 #define KMP_PLACE_ALL (-1)
863 #define KMP_PLACE_UNDEFINED (-2)
864 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
865 #define KMP_AFFINITY_NON_PROC_BIND \
866  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
867  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
868  (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
869 #endif /* KMP_AFFINITY_SUPPORTED */
870 
871 extern int __kmp_affinity_num_places;
872 
873 typedef enum kmp_cancel_kind_t {
874  cancel_noreq = 0,
875  cancel_parallel = 1,
876  cancel_loop = 2,
877  cancel_sections = 3,
878  cancel_taskgroup = 4
879 } kmp_cancel_kind_t;
880 
881 // KMP_HW_SUBSET support:
882 typedef struct kmp_hws_item {
883  int num;
884  int offset;
885 } kmp_hws_item_t;
886 
887 extern kmp_hws_item_t __kmp_hws_socket;
888 extern kmp_hws_item_t __kmp_hws_die;
889 extern kmp_hws_item_t __kmp_hws_node;
890 extern kmp_hws_item_t __kmp_hws_tile;
891 extern kmp_hws_item_t __kmp_hws_core;
892 extern kmp_hws_item_t __kmp_hws_proc;
893 extern int __kmp_hws_requested;
894 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
895 
896 /* ------------------------------------------------------------------------ */
897 
898 #define KMP_PAD(type, sz) \
899  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
900 
901 // We need to avoid using -1 as a GTID as +1 is added to the gtid
902 // when storing it in a lock, and the value 0 is reserved.
903 #define KMP_GTID_DNE (-2) /* Does not exist */
904 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
905 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
906 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
907 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
908 
909 /* OpenMP 5.0 Memory Management support */
910 
911 #ifndef __OMP_H
912 // Duplicate type definitions from omp.h
913 typedef uintptr_t omp_uintptr_t;
914 
915 typedef enum {
916  omp_atk_sync_hint = 1,
917  omp_atk_alignment = 2,
918  omp_atk_access = 3,
919  omp_atk_pool_size = 4,
920  omp_atk_fallback = 5,
921  omp_atk_fb_data = 6,
922  omp_atk_pinned = 7,
923  omp_atk_partition = 8
924 } omp_alloctrait_key_t;
925 
926 typedef enum {
927  omp_atv_false = 0,
928  omp_atv_true = 1,
929  omp_atv_contended = 3,
930  omp_atv_uncontended = 4,
931  omp_atv_serialized = 5,
932  omp_atv_sequential = omp_atv_serialized, // (deprecated)
933  omp_atv_private = 6,
934  omp_atv_all = 7,
935  omp_atv_thread = 8,
936  omp_atv_pteam = 9,
937  omp_atv_cgroup = 10,
938  omp_atv_default_mem_fb = 11,
939  omp_atv_null_fb = 12,
940  omp_atv_abort_fb = 13,
941  omp_atv_allocator_fb = 14,
942  omp_atv_environment = 15,
943  omp_atv_nearest = 16,
944  omp_atv_blocked = 17,
945  omp_atv_interleaved = 18
946 } omp_alloctrait_value_t;
947 #define omp_atv_default ((omp_uintptr_t)-1)
948 
949 typedef void *omp_memspace_handle_t;
950 extern omp_memspace_handle_t const omp_default_mem_space;
951 extern omp_memspace_handle_t const omp_large_cap_mem_space;
952 extern omp_memspace_handle_t const omp_const_mem_space;
953 extern omp_memspace_handle_t const omp_high_bw_mem_space;
954 extern omp_memspace_handle_t const omp_low_lat_mem_space;
955 // Preview of target memory support
956 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
957 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
958 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
959 
960 typedef struct {
961  omp_alloctrait_key_t key;
962  omp_uintptr_t value;
963 } omp_alloctrait_t;
964 
965 typedef void *omp_allocator_handle_t;
966 extern omp_allocator_handle_t const omp_null_allocator;
967 extern omp_allocator_handle_t const omp_default_mem_alloc;
968 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
969 extern omp_allocator_handle_t const omp_const_mem_alloc;
970 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
971 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
972 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
973 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
974 extern omp_allocator_handle_t const omp_thread_mem_alloc;
975 // Preview of target memory support
976 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
977 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
978 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
979 extern omp_allocator_handle_t const kmp_max_mem_alloc;
980 extern omp_allocator_handle_t __kmp_def_allocator;
981 
982 // end of duplicate type definitions from omp.h
983 #endif
984 
985 extern int __kmp_memkind_available;
986 
987 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
988 
989 typedef struct kmp_allocator_t {
990  omp_memspace_handle_t memspace;
991  void **memkind; // pointer to memkind
992  int alignment;
993  omp_alloctrait_value_t fb;
994  kmp_allocator_t *fb_data;
995  kmp_uint64 pool_size;
996  kmp_uint64 pool_used;
997 } kmp_allocator_t;
998 
999 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1000  omp_memspace_handle_t,
1001  int ntraits,
1002  omp_alloctrait_t traits[]);
1003 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1004 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1005 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1006 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1007 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1008  omp_allocator_handle_t al);
1009 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1010  omp_allocator_handle_t al,
1011  omp_allocator_handle_t free_al);
1012 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1013 
1014 extern void __kmp_init_memkind();
1015 extern void __kmp_fini_memkind();
1016 extern void __kmp_init_target_mem();
1017 
1018 /* ------------------------------------------------------------------------ */
1019 
1020 #define KMP_UINT64_MAX \
1021  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1022 
1023 #define KMP_MIN_NTH 1
1024 
1025 #ifndef KMP_MAX_NTH
1026 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1027 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1028 #else
1029 #define KMP_MAX_NTH INT_MAX
1030 #endif
1031 #endif /* KMP_MAX_NTH */
1032 
1033 #ifdef PTHREAD_STACK_MIN
1034 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1035 #else
1036 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1037 #endif
1038 
1039 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1040 
1041 #if KMP_ARCH_X86
1042 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1043 #elif KMP_ARCH_X86_64
1044 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1045 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1046 #else
1047 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1048 #endif
1049 
1050 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1051 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1052 #define KMP_MAX_MALLOC_POOL_INCR \
1053  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1054 
1055 #define KMP_MIN_STKOFFSET (0)
1056 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1057 #if KMP_OS_DARWIN
1058 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1059 #else
1060 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1061 #endif
1062 
1063 #define KMP_MIN_STKPADDING (0)
1064 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1065 
1066 #define KMP_BLOCKTIME_MULTIPLIER \
1067  (1000) /* number of blocktime units per second */
1068 #define KMP_MIN_BLOCKTIME (0)
1069 #define KMP_MAX_BLOCKTIME \
1070  (INT_MAX) /* Must be this for "infinite" setting the work */
1071 #define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */
1072 
1073 #if KMP_USE_MONITOR
1074 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1075 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1076 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1077 
1078 /* Calculate new number of monitor wakeups for a specific block time based on
1079  previous monitor_wakeups. Only allow increasing number of wakeups */
1080 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1081  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1082  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1083  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1084  ? (monitor_wakeups) \
1085  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1086 
1087 /* Calculate number of intervals for a specific block time based on
1088  monitor_wakeups */
1089 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1090  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1091  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1092 #else
1093 #define KMP_BLOCKTIME(team, tid) \
1094  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1095 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1096 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1097 extern kmp_uint64 __kmp_ticks_per_msec;
1098 #if KMP_COMPILER_ICC
1099 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1100 #else
1101 #define KMP_NOW() __kmp_hardware_timestamp()
1102 #endif
1103 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1104 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1105  (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1106 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1107 #else
1108 // System time is retrieved sporadically while blocking.
1109 extern kmp_uint64 __kmp_now_nsec();
1110 #define KMP_NOW() __kmp_now_nsec()
1111 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1112 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1113  (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1114 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1115 #endif
1116 #endif // KMP_USE_MONITOR
1117 
1118 #define KMP_MIN_STATSCOLS 40
1119 #define KMP_MAX_STATSCOLS 4096
1120 #define KMP_DEFAULT_STATSCOLS 80
1121 
1122 #define KMP_MIN_INTERVAL 0
1123 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1124 #define KMP_DEFAULT_INTERVAL 0
1125 
1126 #define KMP_MIN_CHUNK 1
1127 #define KMP_MAX_CHUNK (INT_MAX - 1)
1128 #define KMP_DEFAULT_CHUNK 1
1129 
1130 #define KMP_MIN_DISP_NUM_BUFF 1
1131 #define KMP_DFLT_DISP_NUM_BUFF 7
1132 #define KMP_MAX_DISP_NUM_BUFF 4096
1133 
1134 #define KMP_MAX_ORDERED 8
1135 
1136 #define KMP_MAX_FIELDS 32
1137 
1138 #define KMP_MAX_BRANCH_BITS 31
1139 
1140 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1141 
1142 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1143 
1144 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1145 
1146 /* Minimum number of threads before switch to TLS gtid (experimentally
1147  determined) */
1148 /* josh TODO: what about OS X* tuning? */
1149 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1150 #define KMP_TLS_GTID_MIN 5
1151 #else
1152 #define KMP_TLS_GTID_MIN INT_MAX
1153 #endif
1154 
1155 #define KMP_MASTER_TID(tid) (0 == (tid))
1156 #define KMP_WORKER_TID(tid) (0 != (tid))
1157 
1158 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1159 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1160 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1161 
1162 #ifndef TRUE
1163 #define FALSE 0
1164 #define TRUE (!FALSE)
1165 #endif
1166 
1167 /* NOTE: all of the following constants must be even */
1168 
1169 #if KMP_OS_WINDOWS
1170 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1171 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1172 #elif KMP_OS_LINUX
1173 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1174 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1175 #elif KMP_OS_DARWIN
1176 /* TODO: tune for KMP_OS_DARWIN */
1177 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1178 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1179 #elif KMP_OS_DRAGONFLY
1180 /* TODO: tune for KMP_OS_DRAGONFLY */
1181 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1182 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1183 #elif KMP_OS_FREEBSD
1184 /* TODO: tune for KMP_OS_FREEBSD */
1185 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1186 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1187 #elif KMP_OS_NETBSD
1188 /* TODO: tune for KMP_OS_NETBSD */
1189 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1190 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1191 #elif KMP_OS_HURD
1192 /* TODO: tune for KMP_OS_HURD */
1193 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1194 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1195 #elif KMP_OS_OPENBSD
1196 /* TODO: tune for KMP_OS_OPENBSD */
1197 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1198 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1199 #endif
1200 
1201 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1202 typedef struct kmp_cpuid {
1203  kmp_uint32 eax;
1204  kmp_uint32 ebx;
1205  kmp_uint32 ecx;
1206  kmp_uint32 edx;
1207 } kmp_cpuid_t;
1208 
1209 typedef struct kmp_cpuinfo {
1210  int initialized; // If 0, other fields are not initialized.
1211  int signature; // CPUID(1).EAX
1212  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1213  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1214  // Model << 4 ) + Model)
1215  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1216  int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1217  int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1218  int apic_id;
1219  int physical_id;
1220  int logical_id;
1221  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1222  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1223 } kmp_cpuinfo_t;
1224 
1225 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1226 
1227 #if KMP_OS_UNIX
1228 // subleaf is only needed for cache and topology discovery and can be set to
1229 // zero in most cases
1230 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1231  __asm__ __volatile__("cpuid"
1232  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1233  : "a"(leaf), "c"(subleaf));
1234 }
1235 // Load p into FPU control word
1236 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1237  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1238 }
1239 // Store FPU control word into p
1240 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1241  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1242 }
1243 static inline void __kmp_clear_x87_fpu_status_word() {
1244 #if KMP_MIC
1245  // 32-bit protected mode x87 FPU state
1246  struct x87_fpu_state {
1247  unsigned cw;
1248  unsigned sw;
1249  unsigned tw;
1250  unsigned fip;
1251  unsigned fips;
1252  unsigned fdp;
1253  unsigned fds;
1254  };
1255  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1256  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1257  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1258  "fldenv %0\n\t" // load FP env back
1259  : "+m"(fpu_state), "+m"(fpu_state.sw));
1260 #else
1261  __asm__ __volatile__("fnclex");
1262 #endif // KMP_MIC
1263 }
1264 #if __SSE__
1265 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1266 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1267 #else
1268 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1269 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1270 #endif
1271 #else
1272 // Windows still has these as external functions in assembly file
1273 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1274 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1275 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1276 extern void __kmp_clear_x87_fpu_status_word();
1277 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1278 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1279 #endif // KMP_OS_UNIX
1280 
1281 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1282 
1283 #if KMP_ARCH_X86
1284 extern void __kmp_x86_pause(void);
1285 #elif KMP_MIC
1286 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1287 // regression after removal of extra PAUSE from spin loops. Changing
1288 // the delay from 100 to 300 showed even better performance than double PAUSE
1289 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1290 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1291 #else
1292 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1293 #endif
1294 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1295 #elif KMP_ARCH_PPC64
1296 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1297 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1298 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1299 #define KMP_CPU_PAUSE() \
1300  do { \
1301  KMP_PPC64_PRI_LOW(); \
1302  KMP_PPC64_PRI_MED(); \
1303  KMP_PPC64_PRI_LOC_MB(); \
1304  } while (0)
1305 #else
1306 #define KMP_CPU_PAUSE() /* nothing to do */
1307 #endif
1308 
1309 #define KMP_INIT_YIELD(count) \
1310  { (count) = __kmp_yield_init; }
1311 
1312 #define KMP_OVERSUBSCRIBED \
1313  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1314 
1315 #define KMP_TRY_YIELD \
1316  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1317 
1318 #define KMP_TRY_YIELD_OVERSUB \
1319  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1320 
1321 #define KMP_YIELD(cond) \
1322  { \
1323  KMP_CPU_PAUSE(); \
1324  if ((cond) && (KMP_TRY_YIELD)) \
1325  __kmp_yield(); \
1326  }
1327 
1328 #define KMP_YIELD_OVERSUB() \
1329  { \
1330  KMP_CPU_PAUSE(); \
1331  if ((KMP_TRY_YIELD_OVERSUB)) \
1332  __kmp_yield(); \
1333  }
1334 
1335 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1336 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1337 #define KMP_YIELD_SPIN(count) \
1338  { \
1339  KMP_CPU_PAUSE(); \
1340  if (KMP_TRY_YIELD) { \
1341  (count) -= 2; \
1342  if (!(count)) { \
1343  __kmp_yield(); \
1344  (count) = __kmp_yield_next; \
1345  } \
1346  } \
1347  }
1348 
1349 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \
1350  { \
1351  KMP_CPU_PAUSE(); \
1352  if ((KMP_TRY_YIELD_OVERSUB)) \
1353  __kmp_yield(); \
1354  else if (__kmp_use_yield == 1) { \
1355  (count) -= 2; \
1356  if (!(count)) { \
1357  __kmp_yield(); \
1358  (count) = __kmp_yield_next; \
1359  } \
1360  } \
1361  }
1362 
1363 // User-level Monitor/Mwait
1364 #if KMP_HAVE_UMWAIT
1365 // We always try for UMWAIT first
1366 #if KMP_HAVE_WAITPKG_INTRINSICS
1367 #if KMP_HAVE_IMMINTRIN_H
1368 #include <immintrin.h>
1369 #elif KMP_HAVE_INTRIN_H
1370 #include <intrin.h>
1371 #endif
1372 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1373 KMP_ATTRIBUTE_TARGET_WAITPKG
1374 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1375 #if !KMP_HAVE_WAITPKG_INTRINSICS
1376  uint32_t timeHi = uint32_t(counter >> 32);
1377  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1378  char flag;
1379  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1380  "setb %0"
1381  : "=r"(flag)
1382  : "a"(timeLo), "d"(timeHi), "c"(hint)
1383  :);
1384  return flag;
1385 #else
1386  return _tpause(hint, counter);
1387 #endif
1388 }
1389 KMP_ATTRIBUTE_TARGET_WAITPKG
1390 static inline void __kmp_umonitor(void *cacheline) {
1391 #if !KMP_HAVE_WAITPKG_INTRINSICS
1392  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1393  :
1394  : "a"(cacheline)
1395  :);
1396 #else
1397  _umonitor(cacheline);
1398 #endif
1399 }
1400 KMP_ATTRIBUTE_TARGET_WAITPKG
1401 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1402 #if !KMP_HAVE_WAITPKG_INTRINSICS
1403  uint32_t timeHi = uint32_t(counter >> 32);
1404  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1405  char flag;
1406  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1407  "setb %0"
1408  : "=r"(flag)
1409  : "a"(timeLo), "d"(timeHi), "c"(hint)
1410  :);
1411  return flag;
1412 #else
1413  return _umwait(hint, counter);
1414 #endif
1415 }
1416 #elif KMP_HAVE_MWAIT
1417 #if KMP_OS_UNIX
1418 #include <pmmintrin.h>
1419 #else
1420 #include <intrin.h>
1421 #endif
1422 #if KMP_OS_UNIX
1423 __attribute__((target("sse3")))
1424 #endif
1425 static inline void
1426 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1427  _mm_monitor(cacheline, extensions, hints);
1428 }
1429 #if KMP_OS_UNIX
1430 __attribute__((target("sse3")))
1431 #endif
1432 static inline void
1433 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1434  _mm_mwait(extensions, hints);
1435 }
1436 #endif // KMP_HAVE_UMWAIT
1437 
1438 /* ------------------------------------------------------------------------ */
1439 /* Support datatypes for the orphaned construct nesting checks. */
1440 /* ------------------------------------------------------------------------ */
1441 
1442 /* When adding to this enum, add its corresponding string in cons_text_c[]
1443  * array in kmp_error.cpp */
1444 enum cons_type {
1445  ct_none,
1446  ct_parallel,
1447  ct_pdo,
1448  ct_pdo_ordered,
1449  ct_psections,
1450  ct_psingle,
1451  ct_critical,
1452  ct_ordered_in_parallel,
1453  ct_ordered_in_pdo,
1454  ct_master,
1455  ct_reduce,
1456  ct_barrier,
1457  ct_masked
1458 };
1459 
1460 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1461 
1462 struct cons_data {
1463  ident_t const *ident;
1464  enum cons_type type;
1465  int prev;
1466  kmp_user_lock_p
1467  name; /* address exclusively for critical section name comparison */
1468 };
1469 
1470 struct cons_header {
1471  int p_top, w_top, s_top;
1472  int stack_size, stack_top;
1473  struct cons_data *stack_data;
1474 };
1475 
1476 struct kmp_region_info {
1477  char *text;
1478  int offset[KMP_MAX_FIELDS];
1479  int length[KMP_MAX_FIELDS];
1480 };
1481 
1482 /* ---------------------------------------------------------------------- */
1483 /* ---------------------------------------------------------------------- */
1484 
1485 #if KMP_OS_WINDOWS
1486 typedef HANDLE kmp_thread_t;
1487 typedef DWORD kmp_key_t;
1488 #endif /* KMP_OS_WINDOWS */
1489 
1490 #if KMP_OS_UNIX
1491 typedef pthread_t kmp_thread_t;
1492 typedef pthread_key_t kmp_key_t;
1493 #endif
1494 
1495 extern kmp_key_t __kmp_gtid_threadprivate_key;
1496 
1497 typedef struct kmp_sys_info {
1498  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1499  long minflt; /* the number of page faults serviced without any I/O */
1500  long majflt; /* the number of page faults serviced that required I/O */
1501  long nswap; /* the number of times a process was "swapped" out of memory */
1502  long inblock; /* the number of times the file system had to perform input */
1503  long oublock; /* the number of times the file system had to perform output */
1504  long nvcsw; /* the number of times a context switch was voluntarily */
1505  long nivcsw; /* the number of times a context switch was forced */
1506 } kmp_sys_info_t;
1507 
1508 #if USE_ITT_BUILD
1509 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1510 // required type here. Later we will check the type meets requirements.
1511 typedef int kmp_itt_mark_t;
1512 #define KMP_ITT_DEBUG 0
1513 #endif /* USE_ITT_BUILD */
1514 
1515 typedef kmp_int32 kmp_critical_name[8];
1516 
1526 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1527 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1528  ...);
1529 
1534 /* ---------------------------------------------------------------------------
1535  */
1536 /* Threadprivate initialization/finalization function declarations */
1537 
1538 /* for non-array objects: __kmpc_threadprivate_register() */
1539 
1544 typedef void *(*kmpc_ctor)(void *);
1545 
1550 typedef void (*kmpc_dtor)(
1551  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1552  compiler */
1557 typedef void *(*kmpc_cctor)(void *, void *);
1558 
1559 /* for array objects: __kmpc_threadprivate_register_vec() */
1560 /* First arg: "this" pointer */
1561 /* Last arg: number of array elements */
1567 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1573 typedef void (*kmpc_dtor_vec)(void *, size_t);
1579 typedef void *(*kmpc_cctor_vec)(void *, void *,
1580  size_t); /* function unused by compiler */
1581 
1586 /* keeps tracked of threadprivate cache allocations for cleanup later */
1587 typedef struct kmp_cached_addr {
1588  void **addr; /* address of allocated cache */
1589  void ***compiler_cache; /* pointer to compiler's cache */
1590  void *data; /* pointer to global data */
1591  struct kmp_cached_addr *next; /* pointer to next cached address */
1592 } kmp_cached_addr_t;
1593 
1594 struct private_data {
1595  struct private_data *next; /* The next descriptor in the list */
1596  void *data; /* The data buffer for this descriptor */
1597  int more; /* The repeat count for this descriptor */
1598  size_t size; /* The data size for this descriptor */
1599 };
1600 
1601 struct private_common {
1602  struct private_common *next;
1603  struct private_common *link;
1604  void *gbl_addr;
1605  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1606  size_t cmn_size;
1607 };
1608 
1609 struct shared_common {
1610  struct shared_common *next;
1611  struct private_data *pod_init;
1612  void *obj_init;
1613  void *gbl_addr;
1614  union {
1615  kmpc_ctor ctor;
1616  kmpc_ctor_vec ctorv;
1617  } ct;
1618  union {
1619  kmpc_cctor cctor;
1620  kmpc_cctor_vec cctorv;
1621  } cct;
1622  union {
1623  kmpc_dtor dtor;
1624  kmpc_dtor_vec dtorv;
1625  } dt;
1626  size_t vec_len;
1627  int is_vec;
1628  size_t cmn_size;
1629 };
1630 
1631 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1632 #define KMP_HASH_TABLE_SIZE \
1633  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1634 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1635 #define KMP_HASH(x) \
1636  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1637 
1638 struct common_table {
1639  struct private_common *data[KMP_HASH_TABLE_SIZE];
1640 };
1641 
1642 struct shared_table {
1643  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1644 };
1645 
1646 /* ------------------------------------------------------------------------ */
1647 
1648 #if KMP_USE_HIER_SCHED
1649 // Shared barrier data that exists inside a single unit of the scheduling
1650 // hierarchy
1651 typedef struct kmp_hier_private_bdata_t {
1652  kmp_int32 num_active;
1653  kmp_uint64 index;
1654  kmp_uint64 wait_val[2];
1655 } kmp_hier_private_bdata_t;
1656 #endif
1657 
1658 typedef struct kmp_sched_flags {
1659  unsigned ordered : 1;
1660  unsigned nomerge : 1;
1661  unsigned contains_last : 1;
1662 #if KMP_USE_HIER_SCHED
1663  unsigned use_hier : 1;
1664  unsigned unused : 28;
1665 #else
1666  unsigned unused : 29;
1667 #endif
1668 } kmp_sched_flags_t;
1669 
1670 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1671 
1672 #if KMP_STATIC_STEAL_ENABLED
1673 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1674  kmp_int32 count;
1675  kmp_int32 ub;
1676  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1677  kmp_int32 lb;
1678  kmp_int32 st;
1679  kmp_int32 tc;
1680  kmp_lock_t *steal_lock; // lock used for chunk stealing
1681  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1682  // a) parm3 is properly aligned and
1683  // b) all parm1-4 are on the same cache line.
1684  // Because of parm1-4 are used together, performance seems to be better
1685  // if they are on the same cache line (not measured though).
1686 
1687  struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1688  kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1689  kmp_int32 parm2; // make no real change at least while padding is off.
1690  kmp_int32 parm3;
1691  kmp_int32 parm4;
1692  };
1693 
1694  kmp_uint32 ordered_lower;
1695  kmp_uint32 ordered_upper;
1696 #if KMP_OS_WINDOWS
1697  kmp_int32 last_upper;
1698 #endif /* KMP_OS_WINDOWS */
1699 } dispatch_private_info32_t;
1700 
1701 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1702  kmp_int64 count; // current chunk number for static & static-steal scheduling
1703  kmp_int64 ub; /* upper-bound */
1704  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1705  kmp_int64 lb; /* lower-bound */
1706  kmp_int64 st; /* stride */
1707  kmp_int64 tc; /* trip count (number of iterations) */
1708  kmp_lock_t *steal_lock; // lock used for chunk stealing
1709  /* parm[1-4] are used in different ways by different scheduling algorithms */
1710 
1711  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1712  // a) parm3 is properly aligned and
1713  // b) all parm1-4 are in the same cache line.
1714  // Because of parm1-4 are used together, performance seems to be better
1715  // if they are in the same line (not measured though).
1716 
1717  struct KMP_ALIGN(32) {
1718  kmp_int64 parm1;
1719  kmp_int64 parm2;
1720  kmp_int64 parm3;
1721  kmp_int64 parm4;
1722  };
1723 
1724  kmp_uint64 ordered_lower;
1725  kmp_uint64 ordered_upper;
1726 #if KMP_OS_WINDOWS
1727  kmp_int64 last_upper;
1728 #endif /* KMP_OS_WINDOWS */
1729 } dispatch_private_info64_t;
1730 #else /* KMP_STATIC_STEAL_ENABLED */
1731 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1732  kmp_int32 lb;
1733  kmp_int32 ub;
1734  kmp_int32 st;
1735  kmp_int32 tc;
1736 
1737  kmp_int32 parm1;
1738  kmp_int32 parm2;
1739  kmp_int32 parm3;
1740  kmp_int32 parm4;
1741 
1742  kmp_int32 count;
1743 
1744  kmp_uint32 ordered_lower;
1745  kmp_uint32 ordered_upper;
1746 #if KMP_OS_WINDOWS
1747  kmp_int32 last_upper;
1748 #endif /* KMP_OS_WINDOWS */
1749 } dispatch_private_info32_t;
1750 
1751 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1752  kmp_int64 lb; /* lower-bound */
1753  kmp_int64 ub; /* upper-bound */
1754  kmp_int64 st; /* stride */
1755  kmp_int64 tc; /* trip count (number of iterations) */
1756 
1757  /* parm[1-4] are used in different ways by different scheduling algorithms */
1758  kmp_int64 parm1;
1759  kmp_int64 parm2;
1760  kmp_int64 parm3;
1761  kmp_int64 parm4;
1762 
1763  kmp_int64 count; /* current chunk number for static scheduling */
1764 
1765  kmp_uint64 ordered_lower;
1766  kmp_uint64 ordered_upper;
1767 #if KMP_OS_WINDOWS
1768  kmp_int64 last_upper;
1769 #endif /* KMP_OS_WINDOWS */
1770 } dispatch_private_info64_t;
1771 #endif /* KMP_STATIC_STEAL_ENABLED */
1772 
1773 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1774  union private_info {
1775  dispatch_private_info32_t p32;
1776  dispatch_private_info64_t p64;
1777  } u;
1778  enum sched_type schedule; /* scheduling algorithm */
1779  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1780  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1781  kmp_int32 ordered_bumped;
1782  // Stack of buffers for nest of serial regions
1783  struct dispatch_private_info *next;
1784  kmp_int32 type_size; /* the size of types in private_info */
1785 #if KMP_USE_HIER_SCHED
1786  kmp_int32 hier_id;
1787  void *parent; /* hierarchical scheduling parent pointer */
1788 #endif
1789  enum cons_type pushed_ws;
1790 } dispatch_private_info_t;
1791 
1792 typedef struct dispatch_shared_info32 {
1793  /* chunk index under dynamic, number of idle threads under static-steal;
1794  iteration index otherwise */
1795  volatile kmp_uint32 iteration;
1796  volatile kmp_int32 num_done;
1797  volatile kmp_uint32 ordered_iteration;
1798  // Dummy to retain the structure size after making ordered_iteration scalar
1799  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1800 } dispatch_shared_info32_t;
1801 
1802 typedef struct dispatch_shared_info64 {
1803  /* chunk index under dynamic, number of idle threads under static-steal;
1804  iteration index otherwise */
1805  volatile kmp_uint64 iteration;
1806  volatile kmp_int64 num_done;
1807  volatile kmp_uint64 ordered_iteration;
1808  // Dummy to retain the structure size after making ordered_iteration scalar
1809  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1810 } dispatch_shared_info64_t;
1811 
1812 typedef struct dispatch_shared_info {
1813  union shared_info {
1814  dispatch_shared_info32_t s32;
1815  dispatch_shared_info64_t s64;
1816  } u;
1817  volatile kmp_uint32 buffer_index;
1818  volatile kmp_int32 doacross_buf_idx; // teamwise index
1819  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1820  kmp_int32 doacross_num_done; // count finished threads
1821 #if KMP_USE_HIER_SCHED
1822  void *hier;
1823 #endif
1824 #if KMP_USE_HWLOC
1825  // When linking with libhwloc, the ORDERED EPCC test slows down on big
1826  // machines (> 48 cores). Performance analysis showed that a cache thrash
1827  // was occurring and this padding helps alleviate the problem.
1828  char padding[64];
1829 #endif
1830 } dispatch_shared_info_t;
1831 
1832 typedef struct kmp_disp {
1833  /* Vector for ORDERED SECTION */
1834  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1835  /* Vector for END ORDERED SECTION */
1836  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1837 
1838  dispatch_shared_info_t *th_dispatch_sh_current;
1839  dispatch_private_info_t *th_dispatch_pr_current;
1840 
1841  dispatch_private_info_t *th_disp_buffer;
1842  kmp_uint32 th_disp_index;
1843  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1844  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1845  kmp_int64 *th_doacross_info; // info on loop bounds
1846 #if KMP_USE_INTERNODE_ALIGNMENT
1847  char more_padding[INTERNODE_CACHE_LINE];
1848 #endif
1849 } kmp_disp_t;
1850 
1851 /* ------------------------------------------------------------------------ */
1852 /* Barrier stuff */
1853 
1854 /* constants for barrier state update */
1855 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1856 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1857 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1858 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1859 
1860 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1861 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1862 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1863 
1864 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1865 #error "Barrier sleep bit must be smaller than barrier bump bit"
1866 #endif
1867 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1868 #error "Barrier unused bit must be smaller than barrier bump bit"
1869 #endif
1870 
1871 // Constants for release barrier wait state: currently, hierarchical only
1872 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1873 #define KMP_BARRIER_OWN_FLAG \
1874  1 // Normal state; worker waiting on own b_go flag in release
1875 #define KMP_BARRIER_PARENT_FLAG \
1876  2 // Special state; worker waiting on parent's b_go flag in release
1877 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1878  3 // Special state; tells worker to shift from parent to own b_go
1879 #define KMP_BARRIER_SWITCHING \
1880  4 // Special state; worker resets appropriate flag on wake-up
1881 
1882 #define KMP_NOT_SAFE_TO_REAP \
1883  0 // Thread th_reap_state: not safe to reap (tasking)
1884 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1885 
1886 // The flag_type describes the storage used for the flag.
1887 enum flag_type {
1888  flag32,
1889  flag64,
1890  atomic_flag64,
1891  flag_oncore,
1892  flag_unset
1893 };
1894 
1895 enum barrier_type {
1896  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1897  barriers if enabled) */
1898  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1899 #if KMP_FAST_REDUCTION_BARRIER
1900  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1901 #endif // KMP_FAST_REDUCTION_BARRIER
1902  bs_last_barrier /* Just a placeholder to mark the end */
1903 };
1904 
1905 // to work with reduction barriers just like with plain barriers
1906 #if !KMP_FAST_REDUCTION_BARRIER
1907 #define bs_reduction_barrier bs_plain_barrier
1908 #endif // KMP_FAST_REDUCTION_BARRIER
1909 
1910 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1911  bp_linear_bar =
1912  0, /* Single level (degenerate) tree */
1913  bp_tree_bar =
1914  1, /* Balanced tree with branching factor 2^n */
1915  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1916  branching factor 2^n */
1917  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1918  bp_dist_bar = 4, /* Distributed barrier */
1919  bp_last_bar /* Placeholder to mark the end */
1920 } kmp_bar_pat_e;
1921 
1922 #define KMP_BARRIER_ICV_PUSH 1
1923 
1924 /* Record for holding the values of the internal controls stack records */
1925 typedef struct kmp_internal_control {
1926  int serial_nesting_level; /* corresponds to the value of the
1927  th_team_serialized field */
1928  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1929  thread) */
1930  kmp_int8
1931  bt_set; /* internal control for whether blocktime is explicitly set */
1932  int blocktime; /* internal control for blocktime */
1933 #if KMP_USE_MONITOR
1934  int bt_intervals; /* internal control for blocktime intervals */
1935 #endif
1936  int nproc; /* internal control for #threads for next parallel region (per
1937  thread) */
1938  int thread_limit; /* internal control for thread-limit-var */
1939  int max_active_levels; /* internal control for max_active_levels */
1940  kmp_r_sched_t
1941  sched; /* internal control for runtime schedule {sched,chunk} pair */
1942  kmp_proc_bind_t proc_bind; /* internal control for affinity */
1943  kmp_int32 default_device; /* internal control for default device */
1944  struct kmp_internal_control *next;
1945 } kmp_internal_control_t;
1946 
1947 static inline void copy_icvs(kmp_internal_control_t *dst,
1948  kmp_internal_control_t *src) {
1949  *dst = *src;
1950 }
1951 
1952 /* Thread barrier needs volatile barrier fields */
1953 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1954  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1955  // uses of it). It is not explicitly aligned below, because we *don't* want
1956  // it to be padded -- instead, we fit b_go into the same cache line with
1957  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1958  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1959  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1960  // same NGO store
1961  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1962  KMP_ALIGN_CACHE volatile kmp_uint64
1963  b_arrived; // STATE => task reached synch point.
1964  kmp_uint32 *skip_per_level;
1965  kmp_uint32 my_level;
1966  kmp_int32 parent_tid;
1967  kmp_int32 old_tid;
1968  kmp_uint32 depth;
1969  struct kmp_bstate *parent_bar;
1970  kmp_team_t *team;
1971  kmp_uint64 leaf_state;
1972  kmp_uint32 nproc;
1973  kmp_uint8 base_leaf_kids;
1974  kmp_uint8 leaf_kids;
1975  kmp_uint8 offset;
1976  kmp_uint8 wait_flag;
1977  kmp_uint8 use_oncore_barrier;
1978 #if USE_DEBUGGER
1979  // The following field is intended for the debugger solely. Only the worker
1980  // thread itself accesses this field: the worker increases it by 1 when it
1981  // arrives to a barrier.
1982  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1983 #endif /* USE_DEBUGGER */
1984 } kmp_bstate_t;
1985 
1986 union KMP_ALIGN_CACHE kmp_barrier_union {
1987  double b_align; /* use worst case alignment */
1988  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1989  kmp_bstate_t bb;
1990 };
1991 
1992 typedef union kmp_barrier_union kmp_balign_t;
1993 
1994 /* Team barrier needs only non-volatile arrived counter */
1995 union KMP_ALIGN_CACHE kmp_barrier_team_union {
1996  double b_align; /* use worst case alignment */
1997  char b_pad[CACHE_LINE];
1998  struct {
1999  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2000 #if USE_DEBUGGER
2001  // The following two fields are indended for the debugger solely. Only
2002  // primary thread of the team accesses these fields: the first one is
2003  // increased by 1 when the primary thread arrives to a barrier, the second
2004  // one is increased by one when all the threads arrived.
2005  kmp_uint b_master_arrived;
2006  kmp_uint b_team_arrived;
2007 #endif
2008  };
2009 };
2010 
2011 typedef union kmp_barrier_team_union kmp_balign_team_t;
2012 
2013 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2014  threads when a condition changes. This is to workaround an NPTL bug where
2015  padding was added to pthread_cond_t which caused the initialization routine
2016  to write outside of the structure if compiled on pre-NPTL threads. */
2017 #if KMP_OS_WINDOWS
2018 typedef struct kmp_win32_mutex {
2019  /* The Lock */
2020  CRITICAL_SECTION cs;
2021 } kmp_win32_mutex_t;
2022 
2023 typedef struct kmp_win32_cond {
2024  /* Count of the number of waiters. */
2025  int waiters_count_;
2026 
2027  /* Serialize access to <waiters_count_> */
2028  kmp_win32_mutex_t waiters_count_lock_;
2029 
2030  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2031  int release_count_;
2032 
2033  /* Keeps track of the current "generation" so that we don't allow */
2034  /* one thread to steal all the "releases" from the broadcast. */
2035  int wait_generation_count_;
2036 
2037  /* A manual-reset event that's used to block and release waiting threads. */
2038  HANDLE event_;
2039 } kmp_win32_cond_t;
2040 #endif
2041 
2042 #if KMP_OS_UNIX
2043 
2044 union KMP_ALIGN_CACHE kmp_cond_union {
2045  double c_align;
2046  char c_pad[CACHE_LINE];
2047  pthread_cond_t c_cond;
2048 };
2049 
2050 typedef union kmp_cond_union kmp_cond_align_t;
2051 
2052 union KMP_ALIGN_CACHE kmp_mutex_union {
2053  double m_align;
2054  char m_pad[CACHE_LINE];
2055  pthread_mutex_t m_mutex;
2056 };
2057 
2058 typedef union kmp_mutex_union kmp_mutex_align_t;
2059 
2060 #endif /* KMP_OS_UNIX */
2061 
2062 typedef struct kmp_desc_base {
2063  void *ds_stackbase;
2064  size_t ds_stacksize;
2065  int ds_stackgrow;
2066  kmp_thread_t ds_thread;
2067  volatile int ds_tid;
2068  int ds_gtid;
2069 #if KMP_OS_WINDOWS
2070  volatile int ds_alive;
2071  DWORD ds_thread_id;
2072 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2073  However, debugger support (libomp_db) cannot work with handles, because they
2074  uncomparable. For example, debugger requests info about thread with handle h.
2075  h is valid within debugger process, and meaningless within debugee process.
2076  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2077  within debugee process, but it is a *new* handle which does *not* equal to
2078  any other handle in debugee... The only way to compare handles is convert
2079  them to system-wide ids. GetThreadId() function is available only in
2080  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2081  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2082  thread id by call to GetCurrentThreadId() from within the thread and save it
2083  to let libomp_db identify threads. */
2084 #endif /* KMP_OS_WINDOWS */
2085 } kmp_desc_base_t;
2086 
2087 typedef union KMP_ALIGN_CACHE kmp_desc {
2088  double ds_align; /* use worst case alignment */
2089  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2090  kmp_desc_base_t ds;
2091 } kmp_desc_t;
2092 
2093 typedef struct kmp_local {
2094  volatile int this_construct; /* count of single's encountered by thread */
2095  void *reduce_data;
2096 #if KMP_USE_BGET
2097  void *bget_data;
2098  void *bget_list;
2099 #if !USE_CMP_XCHG_FOR_BGET
2100 #ifdef USE_QUEUING_LOCK_FOR_BGET
2101  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2102 #else
2103  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2104 // bootstrap lock so we can use it at library
2105 // shutdown.
2106 #endif /* USE_LOCK_FOR_BGET */
2107 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2108 #endif /* KMP_USE_BGET */
2109 
2110  PACKED_REDUCTION_METHOD_T
2111  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2112  __kmpc_end_reduce*() */
2113 
2114 } kmp_local_t;
2115 
2116 #define KMP_CHECK_UPDATE(a, b) \
2117  if ((a) != (b)) \
2118  (a) = (b)
2119 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2120  if ((a) != (b)) \
2121  TCW_SYNC_PTR((a), (b))
2122 
2123 #define get__blocktime(xteam, xtid) \
2124  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2125 #define get__bt_set(xteam, xtid) \
2126  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2127 #if KMP_USE_MONITOR
2128 #define get__bt_intervals(xteam, xtid) \
2129  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2130 #endif
2131 
2132 #define get__dynamic_2(xteam, xtid) \
2133  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2134 #define get__nproc_2(xteam, xtid) \
2135  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2136 #define get__sched_2(xteam, xtid) \
2137  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2138 
2139 #define set__blocktime_team(xteam, xtid, xval) \
2140  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2141  (xval))
2142 
2143 #if KMP_USE_MONITOR
2144 #define set__bt_intervals_team(xteam, xtid, xval) \
2145  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2146  (xval))
2147 #endif
2148 
2149 #define set__bt_set_team(xteam, xtid, xval) \
2150  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2151 
2152 #define set__dynamic(xthread, xval) \
2153  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2154 #define get__dynamic(xthread) \
2155  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2156 
2157 #define set__nproc(xthread, xval) \
2158  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2159 
2160 #define set__thread_limit(xthread, xval) \
2161  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2162 
2163 #define set__max_active_levels(xthread, xval) \
2164  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2165 
2166 #define get__max_active_levels(xthread) \
2167  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2168 
2169 #define set__sched(xthread, xval) \
2170  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2171 
2172 #define set__proc_bind(xthread, xval) \
2173  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2174 #define get__proc_bind(xthread) \
2175  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2176 
2177 // OpenMP tasking data structures
2178 
2179 typedef enum kmp_tasking_mode {
2180  tskm_immediate_exec = 0,
2181  tskm_extra_barrier = 1,
2182  tskm_task_teams = 2,
2183  tskm_max = 2
2184 } kmp_tasking_mode_t;
2185 
2186 extern kmp_tasking_mode_t
2187  __kmp_tasking_mode; /* determines how/when to execute tasks */
2188 extern int __kmp_task_stealing_constraint;
2189 extern int __kmp_enable_task_throttling;
2190 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2191 // specified, defaults to 0 otherwise
2192 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2193 extern kmp_int32 __kmp_max_task_priority;
2194 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2195 extern kmp_uint64 __kmp_taskloop_min_tasks;
2196 
2197 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2198  taskdata first */
2199 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2200 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2201 
2202 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2203 // were spawned and queued since the previous barrier release.
2204 #define KMP_TASKING_ENABLED(task_team) \
2205  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2213 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2214 
2215 typedef union kmp_cmplrdata {
2216  kmp_int32 priority;
2217  kmp_routine_entry_t
2218  destructors; /* pointer to function to invoke deconstructors of
2219  firstprivate C++ objects */
2220  /* future data */
2221 } kmp_cmplrdata_t;
2222 
2223 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2226 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2227  void *shareds;
2228  kmp_routine_entry_t
2229  routine;
2230  kmp_int32 part_id;
2231  kmp_cmplrdata_t
2232  data1; /* Two known optional additions: destructors and priority */
2233  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2234  /* future data */
2235  /* private vars */
2236 } kmp_task_t;
2237 
2242 typedef struct kmp_taskgroup {
2243  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2244  std::atomic<kmp_int32>
2245  cancel_request; // request for cancellation of this taskgroup
2246  struct kmp_taskgroup *parent; // parent taskgroup
2247  // Block of data to perform task reduction
2248  void *reduce_data; // reduction related info
2249  kmp_int32 reduce_num_data; // number of data items to reduce
2250  uintptr_t *gomp_data; // gomp reduction data
2251 } kmp_taskgroup_t;
2252 
2253 // forward declarations
2254 typedef union kmp_depnode kmp_depnode_t;
2255 typedef struct kmp_depnode_list kmp_depnode_list_t;
2256 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2257 
2258 #define KMP_DEP_IN 0x1
2259 #define KMP_DEP_OUT 0x2
2260 #define KMP_DEP_INOUT 0x3
2261 #define KMP_DEP_MTX 0x4
2262 #define KMP_DEP_SET 0x8
2263 // Compiler sends us this info:
2264 typedef struct kmp_depend_info {
2265  kmp_intptr_t base_addr;
2266  size_t len;
2267  union {
2268  kmp_uint8 flag;
2269  struct {
2270  unsigned in : 1;
2271  unsigned out : 1;
2272  unsigned mtx : 1;
2273  unsigned set : 1;
2274  } flags;
2275  };
2276 } kmp_depend_info_t;
2277 
2278 // Internal structures to work with task dependencies:
2279 struct kmp_depnode_list {
2280  kmp_depnode_t *node;
2281  kmp_depnode_list_t *next;
2282 };
2283 
2284 // Max number of mutexinoutset dependencies per node
2285 #define MAX_MTX_DEPS 4
2286 
2287 typedef struct kmp_base_depnode {
2288  kmp_depnode_list_t *successors; /* used under lock */
2289  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2290  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2291  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2292  kmp_lock_t lock; /* guards shared fields: task, successors */
2293 #if KMP_SUPPORT_GRAPH_OUTPUT
2294  kmp_uint32 id;
2295 #endif
2296  std::atomic<kmp_int32> npredecessors;
2297  std::atomic<kmp_int32> nrefs;
2298 } kmp_base_depnode_t;
2299 
2300 union KMP_ALIGN_CACHE kmp_depnode {
2301  double dn_align; /* use worst case alignment */
2302  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2303  kmp_base_depnode_t dn;
2304 };
2305 
2306 struct kmp_dephash_entry {
2307  kmp_intptr_t addr;
2308  kmp_depnode_t *last_out;
2309  kmp_depnode_list_t *last_set;
2310  kmp_depnode_list_t *prev_set;
2311  kmp_uint8 last_flag;
2312  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2313  kmp_dephash_entry_t *next_in_bucket;
2314 };
2315 
2316 typedef struct kmp_dephash {
2317  kmp_dephash_entry_t **buckets;
2318  size_t size;
2319  size_t generation;
2320  kmp_uint32 nelements;
2321  kmp_uint32 nconflicts;
2322 } kmp_dephash_t;
2323 
2324 typedef struct kmp_task_affinity_info {
2325  kmp_intptr_t base_addr;
2326  size_t len;
2327  struct {
2328  bool flag1 : 1;
2329  bool flag2 : 1;
2330  kmp_int32 reserved : 30;
2331  } flags;
2332 } kmp_task_affinity_info_t;
2333 
2334 typedef enum kmp_event_type_t {
2335  KMP_EVENT_UNINITIALIZED = 0,
2336  KMP_EVENT_ALLOW_COMPLETION = 1
2337 } kmp_event_type_t;
2338 
2339 typedef struct {
2340  kmp_event_type_t type;
2341  kmp_tas_lock_t lock;
2342  union {
2343  kmp_task_t *task;
2344  } ed;
2345 } kmp_event_t;
2346 
2347 #ifdef BUILD_TIED_TASK_STACK
2348 
2349 /* Tied Task stack definitions */
2350 typedef struct kmp_stack_block {
2351  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2352  struct kmp_stack_block *sb_next;
2353  struct kmp_stack_block *sb_prev;
2354 } kmp_stack_block_t;
2355 
2356 typedef struct kmp_task_stack {
2357  kmp_stack_block_t ts_first_block; // first block of stack entries
2358  kmp_taskdata_t **ts_top; // pointer to the top of stack
2359  kmp_int32 ts_entries; // number of entries on the stack
2360 } kmp_task_stack_t;
2361 
2362 #endif // BUILD_TIED_TASK_STACK
2363 
2364 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2365  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2366  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2367  unsigned final : 1; /* task is final(1) so execute immediately */
2368  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2369  code path */
2370  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2371  invoke destructors from the runtime */
2372  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2373  context of the RTL) */
2374  unsigned priority_specified : 1; /* set if the compiler provides priority
2375  setting for the task */
2376  unsigned detachable : 1; /* 1 == can detach */
2377  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2378  unsigned reserved : 8; /* reserved for compiler use */
2379 
2380  /* Library flags */ /* Total library flags must be 16 bits */
2381  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2382  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2383  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2384  // (1) or may be deferred (0)
2385  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2386  // (0) [>= 2 threads]
2387  /* If either team_serial or tasking_ser is set, task team may be NULL */
2388  /* Task State Flags: */
2389  unsigned started : 1; /* 1==started, 0==not started */
2390  unsigned executing : 1; /* 1==executing, 0==not executing */
2391  unsigned complete : 1; /* 1==complete, 0==not complete */
2392  unsigned freed : 1; /* 1==freed, 0==allocated */
2393  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2394  unsigned reserved31 : 7; /* reserved for library use */
2395 
2396 } kmp_tasking_flags_t;
2397 
2398 struct kmp_taskdata { /* aligned during dynamic allocation */
2399  kmp_int32 td_task_id; /* id, assigned by debugger */
2400  kmp_tasking_flags_t td_flags; /* task flags */
2401  kmp_team_t *td_team; /* team for this task */
2402  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2403  /* Currently not used except for perhaps IDB */
2404  kmp_taskdata_t *td_parent; /* parent task */
2405  kmp_int32 td_level; /* task nesting level */
2406  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2407  ident_t *td_ident; /* task identifier */
2408  // Taskwait data.
2409  ident_t *td_taskwait_ident;
2410  kmp_uint32 td_taskwait_counter;
2411  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2412  KMP_ALIGN_CACHE kmp_internal_control_t
2413  td_icvs; /* Internal control variables for the task */
2414  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2415  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2416  deallocated */
2417  std::atomic<kmp_int32>
2418  td_incomplete_child_tasks; /* Child tasks not yet complete */
2419  kmp_taskgroup_t
2420  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2421  kmp_dephash_t
2422  *td_dephash; // Dependencies for children tasks are tracked from here
2423  kmp_depnode_t
2424  *td_depnode; // Pointer to graph node if this task has dependencies
2425  kmp_task_team_t *td_task_team;
2426  size_t td_size_alloc; // Size of task structure, including shareds etc.
2427 #if defined(KMP_GOMP_COMPAT)
2428  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2429  kmp_int32 td_size_loop_bounds;
2430 #endif
2431  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2432 #if defined(KMP_GOMP_COMPAT)
2433  // GOMP sends in a copy function for copy constructors
2434  void (*td_copy_func)(void *, void *);
2435 #endif
2436  kmp_event_t td_allow_completion_event;
2437 #if OMPT_SUPPORT
2438  ompt_task_info_t ompt_task_info;
2439 #endif
2440 }; // struct kmp_taskdata
2441 
2442 // Make sure padding above worked
2443 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2444 
2445 // Data for task team but per thread
2446 typedef struct kmp_base_thread_data {
2447  kmp_info_p *td_thr; // Pointer back to thread info
2448  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2449  // queued?
2450  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2451  kmp_taskdata_t *
2452  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2453  kmp_int32 td_deque_size; // Size of deck
2454  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2455  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2456  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2457  // GEH: shouldn't this be volatile since used in while-spin?
2458  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2459 #ifdef BUILD_TIED_TASK_STACK
2460  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2461 // scheduling constraint
2462 #endif // BUILD_TIED_TASK_STACK
2463 } kmp_base_thread_data_t;
2464 
2465 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2466 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2467 
2468 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2469 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2470 
2471 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2472  kmp_base_thread_data_t td;
2473  double td_align; /* use worst case alignment */
2474  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2475 } kmp_thread_data_t;
2476 
2477 // Data for task teams which are used when tasking is enabled for the team
2478 typedef struct kmp_base_task_team {
2479  kmp_bootstrap_lock_t
2480  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2481  /* must be bootstrap lock since used at library shutdown*/
2482  kmp_task_team_t *tt_next; /* For linking the task team free list */
2483  kmp_thread_data_t
2484  *tt_threads_data; /* Array of per-thread structures for task team */
2485  /* Data survives task team deallocation */
2486  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2487  executing this team? */
2488  /* TRUE means tt_threads_data is set up and initialized */
2489  kmp_int32 tt_nproc; /* #threads in team */
2490  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2491  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2492  kmp_int32 tt_untied_task_encountered;
2493  // There is hidden helper thread encountered in this task team so that we must
2494  // wait when waiting on task team
2495  kmp_int32 tt_hidden_helper_task_encountered;
2496 
2497  KMP_ALIGN_CACHE
2498  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2499 
2500  KMP_ALIGN_CACHE
2501  volatile kmp_uint32
2502  tt_active; /* is the team still actively executing tasks */
2503 } kmp_base_task_team_t;
2504 
2505 union KMP_ALIGN_CACHE kmp_task_team {
2506  kmp_base_task_team_t tt;
2507  double tt_align; /* use worst case alignment */
2508  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2509 };
2510 
2511 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2512 // Free lists keep same-size free memory slots for fast memory allocation
2513 // routines
2514 typedef struct kmp_free_list {
2515  void *th_free_list_self; // Self-allocated tasks free list
2516  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2517  // threads
2518  void *th_free_list_other; // Non-self free list (to be returned to owner's
2519  // sync list)
2520 } kmp_free_list_t;
2521 #endif
2522 #if KMP_NESTED_HOT_TEAMS
2523 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2524 // are not put in teams pool, and they don't put threads in threads pool.
2525 typedef struct kmp_hot_team_ptr {
2526  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2527  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2528 } kmp_hot_team_ptr_t;
2529 #endif
2530 typedef struct kmp_teams_size {
2531  kmp_int32 nteams; // number of teams in a league
2532  kmp_int32 nth; // number of threads in each team of the league
2533 } kmp_teams_size_t;
2534 
2535 // This struct stores a thread that acts as a "root" for a contention
2536 // group. Contention groups are rooted at kmp_root threads, but also at
2537 // each primary thread of each team created in the teams construct.
2538 // This struct therefore also stores a thread_limit associated with
2539 // that contention group, and a counter to track the number of threads
2540 // active in that contention group. Each thread has a list of these: CG
2541 // root threads have an entry in their list in which cg_root refers to
2542 // the thread itself, whereas other workers in the CG will have a
2543 // single entry where cg_root is same as the entry containing their CG
2544 // root. When a thread encounters a teams construct, it will add a new
2545 // entry to the front of its list, because it now roots a new CG.
2546 typedef struct kmp_cg_root {
2547  kmp_info_p *cg_root; // "root" thread for a contention group
2548  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2549  // thread_limit clause for teams primary threads
2550  kmp_int32 cg_thread_limit;
2551  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2552  struct kmp_cg_root *up; // pointer to higher level CG root in list
2553 } kmp_cg_root_t;
2554 
2555 // OpenMP thread data structures
2556 
2557 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2558  /* Start with the readonly data which is cache aligned and padded. This is
2559  written before the thread starts working by the primary thread. Uber
2560  masters may update themselves later. Usage does not consider serialized
2561  regions. */
2562  kmp_desc_t th_info;
2563  kmp_team_p *th_team; /* team we belong to */
2564  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2565  kmp_info_p *th_next_pool; /* next available thread in the pool */
2566  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2567  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2568 
2569  /* The following are cached from the team info structure */
2570  /* TODO use these in more places as determined to be needed via profiling */
2571  int th_team_nproc; /* number of threads in a team */
2572  kmp_info_p *th_team_master; /* the team's primary thread */
2573  int th_team_serialized; /* team is serialized */
2574  microtask_t th_teams_microtask; /* save entry address for teams construct */
2575  int th_teams_level; /* save initial level of teams construct */
2576 /* it is 0 on device but may be any on host */
2577 
2578 /* The blocktime info is copied from the team struct to the thread struct */
2579 /* at the start of a barrier, and the values stored in the team are used */
2580 /* at points in the code where the team struct is no longer guaranteed */
2581 /* to exist (from the POV of worker threads). */
2582 #if KMP_USE_MONITOR
2583  int th_team_bt_intervals;
2584  int th_team_bt_set;
2585 #else
2586  kmp_uint64 th_team_bt_intervals;
2587 #endif
2588 
2589 #if KMP_AFFINITY_SUPPORTED
2590  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2591 #endif
2592  omp_allocator_handle_t th_def_allocator; /* default allocator */
2593  /* The data set by the primary thread at reinit, then R/W by the worker */
2594  KMP_ALIGN_CACHE int
2595  th_set_nproc; /* if > 0, then only use this request for the next fork */
2596 #if KMP_NESTED_HOT_TEAMS
2597  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2598 #endif
2599  kmp_proc_bind_t
2600  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2601  kmp_teams_size_t
2602  th_teams_size; /* number of teams/threads in teams construct */
2603 #if KMP_AFFINITY_SUPPORTED
2604  int th_current_place; /* place currently bound to */
2605  int th_new_place; /* place to bind to in par reg */
2606  int th_first_place; /* first place in partition */
2607  int th_last_place; /* last place in partition */
2608 #endif
2609  int th_prev_level; /* previous level for affinity format */
2610  int th_prev_num_threads; /* previous num_threads for affinity format */
2611 #if USE_ITT_BUILD
2612  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2613  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2614  kmp_uint64 th_frame_time; /* frame timestamp */
2615 #endif /* USE_ITT_BUILD */
2616  kmp_local_t th_local;
2617  struct private_common *th_pri_head;
2618 
2619  /* Now the data only used by the worker (after initial allocation) */
2620  /* TODO the first serial team should actually be stored in the info_t
2621  structure. this will help reduce initial allocation overhead */
2622  KMP_ALIGN_CACHE kmp_team_p
2623  *th_serial_team; /*serialized team held in reserve*/
2624 
2625 #if OMPT_SUPPORT
2626  ompt_thread_info_t ompt_thread_info;
2627 #endif
2628 
2629  /* The following are also read by the primary thread during reinit */
2630  struct common_table *th_pri_common;
2631 
2632  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2633  /* while awaiting queuing lock acquire */
2634 
2635  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2636  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2637 
2638  ident_t *th_ident;
2639  unsigned th_x; // Random number generator data
2640  unsigned th_a; // Random number generator data
2641 
2642  /* Tasking-related data for the thread */
2643  kmp_task_team_t *th_task_team; // Task team struct
2644  kmp_taskdata_t *th_current_task; // Innermost Task being executed
2645  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2646  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2647  // at nested levels
2648  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2649  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2650  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2651  // tasking, thus safe to reap
2652 
2653  /* More stuff for keeping track of active/sleeping threads (this part is
2654  written by the worker thread) */
2655  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2656  int th_active; // ! sleeping; 32 bits for TCR/TCW
2657  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2658  // 0 = not used in team; 1 = used in team;
2659  // 2 = transitioning to not used in team; 3 = transitioning to used in team
2660  struct cons_header *th_cons; // used for consistency check
2661 #if KMP_USE_HIER_SCHED
2662  // used for hierarchical scheduling
2663  kmp_hier_private_bdata_t *th_hier_bar_data;
2664 #endif
2665 
2666  /* Add the syncronizing data which is cache aligned and padded. */
2667  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2668 
2669  KMP_ALIGN_CACHE volatile kmp_int32
2670  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2671 
2672 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2673 #define NUM_LISTS 4
2674  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2675 // allocation routines
2676 #endif
2677 
2678 #if KMP_OS_WINDOWS
2679  kmp_win32_cond_t th_suspend_cv;
2680  kmp_win32_mutex_t th_suspend_mx;
2681  std::atomic<int> th_suspend_init;
2682 #endif
2683 #if KMP_OS_UNIX
2684  kmp_cond_align_t th_suspend_cv;
2685  kmp_mutex_align_t th_suspend_mx;
2686  std::atomic<int> th_suspend_init_count;
2687 #endif
2688 
2689 #if USE_ITT_BUILD
2690  kmp_itt_mark_t th_itt_mark_single;
2691 // alignment ???
2692 #endif /* USE_ITT_BUILD */
2693 #if KMP_STATS_ENABLED
2694  kmp_stats_list *th_stats;
2695 #endif
2696 #if KMP_OS_UNIX
2697  std::atomic<bool> th_blocking;
2698 #endif
2699  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2700 } kmp_base_info_t;
2701 
2702 typedef union KMP_ALIGN_CACHE kmp_info {
2703  double th_align; /* use worst case alignment */
2704  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2705  kmp_base_info_t th;
2706 } kmp_info_t;
2707 
2708 // OpenMP thread team data structures
2709 
2710 typedef struct kmp_base_data {
2711  volatile kmp_uint32 t_value;
2712 } kmp_base_data_t;
2713 
2714 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2715  double dt_align; /* use worst case alignment */
2716  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2717  kmp_base_data_t dt;
2718 } kmp_sleep_team_t;
2719 
2720 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2721  double dt_align; /* use worst case alignment */
2722  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2723  kmp_base_data_t dt;
2724 } kmp_ordered_team_t;
2725 
2726 typedef int (*launch_t)(int gtid);
2727 
2728 /* Minimum number of ARGV entries to malloc if necessary */
2729 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2730 
2731 // Set up how many argv pointers will fit in cache lines containing
2732 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2733 // larger value for more space between the primary write/worker read section and
2734 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2735 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2736 #define KMP_INLINE_ARGV_BYTES \
2737  (4 * CACHE_LINE - \
2738  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2739  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2740  CACHE_LINE))
2741 #else
2742 #define KMP_INLINE_ARGV_BYTES \
2743  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2744 #endif
2745 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2746 
2747 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2748  // Synchronization Data
2749  // ---------------------------------------------------------------------------
2750  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2751  kmp_balign_team_t t_bar[bs_last_barrier];
2752  std::atomic<int> t_construct; // count of single directive encountered by team
2753  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2754 
2755  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2756  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2757  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2758 
2759  // Primary thread only
2760  // ---------------------------------------------------------------------------
2761  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2762  int t_master_this_cons; // "this_construct" single counter of primary thread
2763  // in parent team
2764  ident_t *t_ident; // if volatile, have to change too much other crud to
2765  // volatile too
2766  kmp_team_p *t_parent; // parent team
2767  kmp_team_p *t_next_pool; // next free team in the team pool
2768  kmp_disp_t *t_dispatch; // thread's dispatch data
2769  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2770  kmp_proc_bind_t t_proc_bind; // bind type for par region
2771 #if USE_ITT_BUILD
2772  kmp_uint64 t_region_time; // region begin timestamp
2773 #endif /* USE_ITT_BUILD */
2774 
2775  // Primary thread write, workers read
2776  // --------------------------------------------------------------------------
2777  KMP_ALIGN_CACHE void **t_argv;
2778  int t_argc;
2779  int t_nproc; // number of threads in team
2780  microtask_t t_pkfn;
2781  launch_t t_invoke; // procedure to launch the microtask
2782 
2783 #if OMPT_SUPPORT
2784  ompt_team_info_t ompt_team_info;
2785  ompt_lw_taskteam_t *ompt_serialized_team_info;
2786 #endif
2787 
2788 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2789  kmp_int8 t_fp_control_saved;
2790  kmp_int8 t_pad2b;
2791  kmp_int16 t_x87_fpu_control_word; // FP control regs
2792  kmp_uint32 t_mxcsr;
2793 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2794 
2795  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2796 
2797  KMP_ALIGN_CACHE kmp_info_t **t_threads;
2798  kmp_taskdata_t
2799  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2800  int t_level; // nested parallel level
2801 
2802  KMP_ALIGN_CACHE int t_max_argc;
2803  int t_max_nproc; // max threads this team can handle (dynamically expandable)
2804  int t_serialized; // levels deep of serialized teams
2805  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2806  int t_id; // team's id, assigned by debugger.
2807  int t_active_level; // nested active parallel level
2808  kmp_r_sched_t t_sched; // run-time schedule for the team
2809 #if KMP_AFFINITY_SUPPORTED
2810  int t_first_place; // first & last place in parent thread's partition.
2811  int t_last_place; // Restore these values to primary thread after par region.
2812 #endif // KMP_AFFINITY_SUPPORTED
2813  int t_display_affinity;
2814  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2815  // omp_set_num_threads() call
2816  omp_allocator_handle_t t_def_allocator; /* default allocator */
2817 
2818 // Read/write by workers as well
2819 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2820  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2821  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2822  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2823  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2824  char dummy_padding[1024];
2825 #endif
2826  // Internal control stack for additional nested teams.
2827  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2828  // for SERIALIZED teams nested 2 or more levels deep
2829  // typed flag to store request state of cancellation
2830  std::atomic<kmp_int32> t_cancel_request;
2831  int t_master_active; // save on fork, restore on join
2832  void *t_copypriv_data; // team specific pointer to copyprivate data array
2833 #if KMP_OS_WINDOWS
2834  std::atomic<kmp_uint32> t_copyin_counter;
2835 #endif
2836 #if USE_ITT_BUILD
2837  void *t_stack_id; // team specific stack stitching id (for ittnotify)
2838 #endif /* USE_ITT_BUILD */
2839  distributedBarrier *b; // Distributed barrier data associated with team
2840 } kmp_base_team_t;
2841 
2842 union KMP_ALIGN_CACHE kmp_team {
2843  kmp_base_team_t t;
2844  double t_align; /* use worst case alignment */
2845  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2846 };
2847 
2848 typedef union KMP_ALIGN_CACHE kmp_time_global {
2849  double dt_align; /* use worst case alignment */
2850  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2851  kmp_base_data_t dt;
2852 } kmp_time_global_t;
2853 
2854 typedef struct kmp_base_global {
2855  /* cache-aligned */
2856  kmp_time_global_t g_time;
2857 
2858  /* non cache-aligned */
2859  volatile int g_abort;
2860  volatile int g_done;
2861 
2862  int g_dynamic;
2863  enum dynamic_mode g_dynamic_mode;
2864 } kmp_base_global_t;
2865 
2866 typedef union KMP_ALIGN_CACHE kmp_global {
2867  kmp_base_global_t g;
2868  double g_align; /* use worst case alignment */
2869  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2870 } kmp_global_t;
2871 
2872 typedef struct kmp_base_root {
2873  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2874  // (r_in_parallel>= 0)
2875  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2876  // the synch overhead or keeping r_active
2877  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2878  // keeps a count of active parallel regions per root
2879  std::atomic<int> r_in_parallel;
2880  // GEH: This is misnamed, should be r_active_levels
2881  kmp_team_t *r_root_team;
2882  kmp_team_t *r_hot_team;
2883  kmp_info_t *r_uber_thread;
2884  kmp_lock_t r_begin_lock;
2885  volatile int r_begin;
2886  int r_blocktime; /* blocktime for this root and descendants */
2887 #if KMP_AFFINITY_SUPPORTED
2888  int r_affinity_assigned;
2889 #endif // KMP_AFFINITY_SUPPORTED
2890 } kmp_base_root_t;
2891 
2892 typedef union KMP_ALIGN_CACHE kmp_root {
2893  kmp_base_root_t r;
2894  double r_align; /* use worst case alignment */
2895  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2896 } kmp_root_t;
2897 
2898 struct fortran_inx_info {
2899  kmp_int32 data;
2900 };
2901 
2902 /* ------------------------------------------------------------------------ */
2903 
2904 extern int __kmp_settings;
2905 extern int __kmp_duplicate_library_ok;
2906 #if USE_ITT_BUILD
2907 extern int __kmp_forkjoin_frames;
2908 extern int __kmp_forkjoin_frames_mode;
2909 #endif
2910 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2911 extern int __kmp_determ_red;
2912 
2913 #ifdef KMP_DEBUG
2914 extern int kmp_a_debug;
2915 extern int kmp_b_debug;
2916 extern int kmp_c_debug;
2917 extern int kmp_d_debug;
2918 extern int kmp_e_debug;
2919 extern int kmp_f_debug;
2920 #endif /* KMP_DEBUG */
2921 
2922 /* For debug information logging using rotating buffer */
2923 #define KMP_DEBUG_BUF_LINES_INIT 512
2924 #define KMP_DEBUG_BUF_LINES_MIN 1
2925 
2926 #define KMP_DEBUG_BUF_CHARS_INIT 128
2927 #define KMP_DEBUG_BUF_CHARS_MIN 2
2928 
2929 extern int
2930  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2931 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2932 extern int
2933  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2934 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2935  entry pointer */
2936 
2937 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2938 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2939  printed in buffer so far */
2940 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2941  recommended in warnings */
2942 /* end rotating debug buffer */
2943 
2944 #ifdef KMP_DEBUG
2945 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2946 
2947 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2948 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2949 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2950 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2951 extern int __kmp_par_range_lb;
2952 extern int __kmp_par_range_ub;
2953 #endif
2954 
2955 /* For printing out dynamic storage map for threads and teams */
2956 extern int
2957  __kmp_storage_map; /* True means print storage map for threads and teams */
2958 extern int __kmp_storage_map_verbose; /* True means storage map includes
2959  placement info */
2960 extern int __kmp_storage_map_verbose_specified;
2961 
2962 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2963 extern kmp_cpuinfo_t __kmp_cpuinfo;
2964 #endif
2965 
2966 extern volatile int __kmp_init_serial;
2967 extern volatile int __kmp_init_gtid;
2968 extern volatile int __kmp_init_common;
2969 extern volatile int __kmp_init_middle;
2970 extern volatile int __kmp_init_parallel;
2971 #if KMP_USE_MONITOR
2972 extern volatile int __kmp_init_monitor;
2973 #endif
2974 extern volatile int __kmp_init_user_locks;
2975 extern volatile int __kmp_init_hidden_helper_threads;
2976 extern int __kmp_init_counter;
2977 extern int __kmp_root_counter;
2978 extern int __kmp_version;
2979 
2980 /* list of address of allocated caches for commons */
2981 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2982 
2983 /* Barrier algorithm types and options */
2984 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2985 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2986 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2987 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2988 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2989 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2990 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2991 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2992 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2993 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2994 extern char const *__kmp_barrier_type_name[bs_last_barrier];
2995 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2996 
2997 /* Global Locks */
2998 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2999 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3000 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3001 extern kmp_bootstrap_lock_t
3002  __kmp_exit_lock; /* exit() is not always thread-safe */
3003 #if KMP_USE_MONITOR
3004 extern kmp_bootstrap_lock_t
3005  __kmp_monitor_lock; /* control monitor thread creation */
3006 #endif
3007 extern kmp_bootstrap_lock_t
3008  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3009  __kmp_threads expansion to co-exist */
3010 
3011 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3012 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3013 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3014 
3015 extern enum library_type __kmp_library;
3016 
3017 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3018 extern enum sched_type __kmp_static; /* default static scheduling method */
3019 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3020 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3021 extern int __kmp_chunk; /* default runtime chunk size */
3022 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3023 
3024 extern size_t __kmp_stksize; /* stack size per thread */
3025 #if KMP_USE_MONITOR
3026 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3027 #endif
3028 extern size_t __kmp_stkoffset; /* stack offset per thread */
3029 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3030 
3031 extern size_t
3032  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3033 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3034 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3035 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3036 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3037 extern int __kmp_generate_warnings; /* should we issue warnings? */
3038 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3039 
3040 #ifdef DEBUG_SUSPEND
3041 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3042 #endif
3043 
3044 extern kmp_int32 __kmp_use_yield;
3045 extern kmp_int32 __kmp_use_yield_exp_set;
3046 extern kmp_uint32 __kmp_yield_init;
3047 extern kmp_uint32 __kmp_yield_next;
3048 
3049 /* ------------------------------------------------------------------------- */
3050 extern int __kmp_allThreadsSpecified;
3051 
3052 extern size_t __kmp_align_alloc;
3053 /* following data protected by initialization routines */
3054 extern int __kmp_xproc; /* number of processors in the system */
3055 extern int __kmp_avail_proc; /* number of processors available to the process */
3056 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3057 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3058 // maximum total number of concurrently-existing threads on device
3059 extern int __kmp_max_nth;
3060 // maximum total number of concurrently-existing threads in a contention group
3061 extern int __kmp_cg_max_nth;
3062 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3063 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3064  __kmp_root */
3065 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3066  region a la OMP_NUM_THREADS */
3067 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3068  initialization */
3069 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3070  used (fixed) */
3071 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3072  (__kmpc_threadprivate_cached()) */
3073 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3074  blocking (env setting) */
3075 #if KMP_USE_MONITOR
3076 extern int
3077  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3078 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3079  blocking */
3080 #endif
3081 #ifdef KMP_ADJUST_BLOCKTIME
3082 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3083 #endif /* KMP_ADJUST_BLOCKTIME */
3084 #ifdef KMP_DFLT_NTH_CORES
3085 extern int __kmp_ncores; /* Total number of cores for threads placement */
3086 #endif
3087 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3088 extern int __kmp_abort_delay;
3089 
3090 extern int __kmp_need_register_atfork_specified;
3091 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3092  to install fork handler */
3093 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3094  0 - not set, will be set at runtime
3095  1 - using stack search
3096  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3097  X*) or TlsGetValue(Windows* OS))
3098  3 - static TLS (__declspec(thread) __kmp_gtid),
3099  Linux* OS .so only. */
3100 extern int
3101  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3102 #ifdef KMP_TDATA_GTID
3103 extern KMP_THREAD_LOCAL int __kmp_gtid;
3104 #endif
3105 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3106 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3107 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3108 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3109 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3110 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3111 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3112 
3113 // max_active_levels for nested parallelism enabled by default via
3114 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3115 extern int __kmp_dflt_max_active_levels;
3116 // Indicates whether value of __kmp_dflt_max_active_levels was already
3117 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3118 extern bool __kmp_dflt_max_active_levels_set;
3119 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3120  concurrent execution per team */
3121 #if KMP_NESTED_HOT_TEAMS
3122 extern int __kmp_hot_teams_mode;
3123 extern int __kmp_hot_teams_max_level;
3124 #endif
3125 
3126 #if KMP_OS_LINUX
3127 extern enum clock_function_type __kmp_clock_function;
3128 extern int __kmp_clock_function_param;
3129 #endif /* KMP_OS_LINUX */
3130 
3131 #if KMP_MIC_SUPPORTED
3132 extern enum mic_type __kmp_mic_type;
3133 #endif
3134 
3135 #ifdef USE_LOAD_BALANCE
3136 extern double __kmp_load_balance_interval; // load balance algorithm interval
3137 #endif /* USE_LOAD_BALANCE */
3138 
3139 // OpenMP 3.1 - Nested num threads array
3140 typedef struct kmp_nested_nthreads_t {
3141  int *nth;
3142  int size;
3143  int used;
3144 } kmp_nested_nthreads_t;
3145 
3146 extern kmp_nested_nthreads_t __kmp_nested_nth;
3147 
3148 #if KMP_USE_ADAPTIVE_LOCKS
3149 
3150 // Parameters for the speculative lock backoff system.
3151 struct kmp_adaptive_backoff_params_t {
3152  // Number of soft retries before it counts as a hard retry.
3153  kmp_uint32 max_soft_retries;
3154  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3155  // the right
3156  kmp_uint32 max_badness;
3157 };
3158 
3159 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3160 
3161 #if KMP_DEBUG_ADAPTIVE_LOCKS
3162 extern const char *__kmp_speculative_statsfile;
3163 #endif
3164 
3165 #endif // KMP_USE_ADAPTIVE_LOCKS
3166 
3167 extern int __kmp_display_env; /* TRUE or FALSE */
3168 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3169 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3170 extern int __kmp_nteams;
3171 extern int __kmp_teams_thread_limit;
3172 
3173 /* ------------------------------------------------------------------------- */
3174 
3175 /* the following are protected by the fork/join lock */
3176 /* write: lock read: anytime */
3177 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3178 /* read/write: lock */
3179 extern volatile kmp_team_t *__kmp_team_pool;
3180 extern volatile kmp_info_t *__kmp_thread_pool;
3181 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3182 
3183 // total num threads reachable from some root thread including all root threads
3184 extern volatile int __kmp_nth;
3185 /* total number of threads reachable from some root thread including all root
3186  threads, and those in the thread pool */
3187 extern volatile int __kmp_all_nth;
3188 extern std::atomic<int> __kmp_thread_pool_active_nth;
3189 
3190 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3191 /* end data protected by fork/join lock */
3192 /* ------------------------------------------------------------------------- */
3193 
3194 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3195 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3196 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3197 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3198 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3199 
3200 // AT: Which way is correct?
3201 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3202 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3203 #define __kmp_get_team_num_threads(gtid) \
3204  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3205 
3206 static inline bool KMP_UBER_GTID(int gtid) {
3207  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3208  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3209  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3210  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3211 }
3212 
3213 static inline int __kmp_tid_from_gtid(int gtid) {
3214  KMP_DEBUG_ASSERT(gtid >= 0);
3215  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3216 }
3217 
3218 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3219  KMP_DEBUG_ASSERT(tid >= 0 && team);
3220  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3221 }
3222 
3223 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3224  KMP_DEBUG_ASSERT(thr);
3225  return thr->th.th_info.ds.ds_gtid;
3226 }
3227 
3228 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3229  KMP_DEBUG_ASSERT(gtid >= 0);
3230  return __kmp_threads[gtid];
3231 }
3232 
3233 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3234  KMP_DEBUG_ASSERT(gtid >= 0);
3235  return __kmp_threads[gtid]->th.th_team;
3236 }
3237 
3238 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3239  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3240  KMP_FATAL(ThreadIdentInvalid);
3241 }
3242 
3243 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3244 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3245 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3246 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3247 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3248 #endif
3249 
3250 /* ------------------------------------------------------------------------- */
3251 
3252 extern kmp_global_t __kmp_global; /* global status */
3253 
3254 extern kmp_info_t __kmp_monitor;
3255 // For Debugging Support Library
3256 extern std::atomic<kmp_int32> __kmp_team_counter;
3257 // For Debugging Support Library
3258 extern std::atomic<kmp_int32> __kmp_task_counter;
3259 
3260 #if USE_DEBUGGER
3261 #define _KMP_GEN_ID(counter) \
3262  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3263 #else
3264 #define _KMP_GEN_ID(counter) (~0)
3265 #endif /* USE_DEBUGGER */
3266 
3267 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3268 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3269 
3270 /* ------------------------------------------------------------------------ */
3271 
3272 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3273  size_t size, char const *format, ...);
3274 
3275 extern void __kmp_serial_initialize(void);
3276 extern void __kmp_middle_initialize(void);
3277 extern void __kmp_parallel_initialize(void);
3278 
3279 extern void __kmp_internal_begin(void);
3280 extern void __kmp_internal_end_library(int gtid);
3281 extern void __kmp_internal_end_thread(int gtid);
3282 extern void __kmp_internal_end_atexit(void);
3283 extern void __kmp_internal_end_dtor(void);
3284 extern void __kmp_internal_end_dest(void *);
3285 
3286 extern int __kmp_register_root(int initial_thread);
3287 extern void __kmp_unregister_root(int gtid);
3288 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3289 
3290 extern int __kmp_ignore_mppbeg(void);
3291 extern int __kmp_ignore_mppend(void);
3292 
3293 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3294 extern void __kmp_exit_single(int gtid);
3295 
3296 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3297 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3298 
3299 #ifdef USE_LOAD_BALANCE
3300 extern int __kmp_get_load_balance(int);
3301 #endif
3302 
3303 extern int __kmp_get_global_thread_id(void);
3304 extern int __kmp_get_global_thread_id_reg(void);
3305 extern void __kmp_exit_thread(int exit_status);
3306 extern void __kmp_abort(char const *format, ...);
3307 extern void __kmp_abort_thread(void);
3308 KMP_NORETURN extern void __kmp_abort_process(void);
3309 extern void __kmp_warn(char const *format, ...);
3310 
3311 extern void __kmp_set_num_threads(int new_nth, int gtid);
3312 
3313 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3314 // registered.
3315 static inline kmp_info_t *__kmp_entry_thread() {
3316  int gtid = __kmp_entry_gtid();
3317 
3318  return __kmp_threads[gtid];
3319 }
3320 
3321 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3322 extern int __kmp_get_max_active_levels(int gtid);
3323 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3324 extern int __kmp_get_team_size(int gtid, int level);
3325 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3326 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3327 
3328 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3329 extern void __kmp_init_random(kmp_info_t *thread);
3330 
3331 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3332 extern void __kmp_adjust_num_threads(int new_nproc);
3333 extern void __kmp_check_stksize(size_t *val);
3334 
3335 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3336 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3337 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3338 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3339 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3340 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3341 
3342 #if USE_FAST_MEMORY
3343 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3344  size_t size KMP_SRC_LOC_DECL);
3345 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3346 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3347 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3348 #define __kmp_fast_allocate(this_thr, size) \
3349  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3350 #define __kmp_fast_free(this_thr, ptr) \
3351  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3352 #endif
3353 
3354 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3355 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3356  size_t elsize KMP_SRC_LOC_DECL);
3357 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3358  size_t size KMP_SRC_LOC_DECL);
3359 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3360 #define __kmp_thread_malloc(th, size) \
3361  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3362 #define __kmp_thread_calloc(th, nelem, elsize) \
3363  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3364 #define __kmp_thread_realloc(th, ptr, size) \
3365  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3366 #define __kmp_thread_free(th, ptr) \
3367  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3368 
3369 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3370 #define KMP_INTERNAL_FREE(p) free(p)
3371 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3372 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3373 
3374 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3375 
3376 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3377  kmp_proc_bind_t proc_bind);
3378 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3379  int num_threads);
3380 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3381  int num_teams_ub, int num_threads);
3382 
3383 extern void __kmp_yield();
3384 
3385 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3386  enum sched_type schedule, kmp_int32 lb,
3387  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3388 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3389  enum sched_type schedule, kmp_uint32 lb,
3390  kmp_uint32 ub, kmp_int32 st,
3391  kmp_int32 chunk);
3392 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3393  enum sched_type schedule, kmp_int64 lb,
3394  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3395 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3396  enum sched_type schedule, kmp_uint64 lb,
3397  kmp_uint64 ub, kmp_int64 st,
3398  kmp_int64 chunk);
3399 
3400 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3401  kmp_int32 *p_last, kmp_int32 *p_lb,
3402  kmp_int32 *p_ub, kmp_int32 *p_st);
3403 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3404  kmp_int32 *p_last, kmp_uint32 *p_lb,
3405  kmp_uint32 *p_ub, kmp_int32 *p_st);
3406 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3407  kmp_int32 *p_last, kmp_int64 *p_lb,
3408  kmp_int64 *p_ub, kmp_int64 *p_st);
3409 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3410  kmp_int32 *p_last, kmp_uint64 *p_lb,
3411  kmp_uint64 *p_ub, kmp_int64 *p_st);
3412 
3413 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3414 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3415 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3416 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3417 
3418 #ifdef KMP_GOMP_COMPAT
3419 
3420 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3421  enum sched_type schedule, kmp_int32 lb,
3422  kmp_int32 ub, kmp_int32 st,
3423  kmp_int32 chunk, int push_ws);
3424 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3425  enum sched_type schedule, kmp_uint32 lb,
3426  kmp_uint32 ub, kmp_int32 st,
3427  kmp_int32 chunk, int push_ws);
3428 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3429  enum sched_type schedule, kmp_int64 lb,
3430  kmp_int64 ub, kmp_int64 st,
3431  kmp_int64 chunk, int push_ws);
3432 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3433  enum sched_type schedule, kmp_uint64 lb,
3434  kmp_uint64 ub, kmp_int64 st,
3435  kmp_int64 chunk, int push_ws);
3436 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3437 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3438 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3439 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3440 
3441 #endif /* KMP_GOMP_COMPAT */
3442 
3443 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3444 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3445 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3446 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3447 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3448 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3449  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3450  void *obj);
3451 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3452  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3453 
3454 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3455  int final_spin
3456 #if USE_ITT_BUILD
3457  ,
3458  void *itt_sync_obj
3459 #endif
3460 );
3461 extern void __kmp_release_64(kmp_flag_64<> *flag);
3462 
3463 extern void __kmp_infinite_loop(void);
3464 
3465 extern void __kmp_cleanup(void);
3466 
3467 #if KMP_HANDLE_SIGNALS
3468 extern int __kmp_handle_signals;
3469 extern void __kmp_install_signals(int parallel_init);
3470 extern void __kmp_remove_signals(void);
3471 #endif
3472 
3473 extern void __kmp_clear_system_time(void);
3474 extern void __kmp_read_system_time(double *delta);
3475 
3476 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3477 
3478 extern void __kmp_expand_host_name(char *buffer, size_t size);
3479 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3480 
3481 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64)
3482 extern void
3483 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3484 #endif
3485 
3486 extern void
3487 __kmp_runtime_initialize(void); /* machine specific initialization */
3488 extern void __kmp_runtime_destroy(void);
3489 
3490 #if KMP_AFFINITY_SUPPORTED
3491 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3492  kmp_affin_mask_t *mask);
3493 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3494  kmp_affin_mask_t *mask);
3495 extern void __kmp_affinity_initialize(void);
3496 extern void __kmp_affinity_uninitialize(void);
3497 extern void __kmp_affinity_set_init_mask(
3498  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3499 extern void __kmp_affinity_set_place(int gtid);
3500 extern void __kmp_affinity_determine_capable(const char *env_var);
3501 extern int __kmp_aux_set_affinity(void **mask);
3502 extern int __kmp_aux_get_affinity(void **mask);
3503 extern int __kmp_aux_get_affinity_max_proc();
3504 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3505 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3506 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3507 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3508 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3509 extern int kmp_set_thread_affinity_mask_initial(void);
3510 #endif
3511 static inline void __kmp_assign_root_init_mask() {
3512  int gtid = __kmp_entry_gtid();
3513  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3514  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3515  __kmp_affinity_set_init_mask(gtid, TRUE);
3516  r->r.r_affinity_assigned = TRUE;
3517  }
3518 }
3519 #else /* KMP_AFFINITY_SUPPORTED */
3520 #define __kmp_assign_root_init_mask() /* Nothing */
3521 #endif /* KMP_AFFINITY_SUPPORTED */
3522 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3523 // format string is for affinity, so platforms that do not support
3524 // affinity can still use the other fields, e.g., %n for num_threads
3525 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3526  kmp_str_buf_t *buffer);
3527 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3528 
3529 extern void __kmp_cleanup_hierarchy();
3530 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3531 
3532 #if KMP_USE_FUTEX
3533 
3534 extern int __kmp_futex_determine_capable(void);
3535 
3536 #endif // KMP_USE_FUTEX
3537 
3538 extern void __kmp_gtid_set_specific(int gtid);
3539 extern int __kmp_gtid_get_specific(void);
3540 
3541 extern double __kmp_read_cpu_time(void);
3542 
3543 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3544 
3545 #if KMP_USE_MONITOR
3546 extern void __kmp_create_monitor(kmp_info_t *th);
3547 #endif
3548 
3549 extern void *__kmp_launch_thread(kmp_info_t *thr);
3550 
3551 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3552 
3553 #if KMP_OS_WINDOWS
3554 extern int __kmp_still_running(kmp_info_t *th);
3555 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3556 extern void __kmp_free_handle(kmp_thread_t tHandle);
3557 #endif
3558 
3559 #if KMP_USE_MONITOR
3560 extern void __kmp_reap_monitor(kmp_info_t *th);
3561 #endif
3562 extern void __kmp_reap_worker(kmp_info_t *th);
3563 extern void __kmp_terminate_thread(int gtid);
3564 
3565 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3566 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3567 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3568 
3569 extern void __kmp_elapsed(double *);
3570 extern void __kmp_elapsed_tick(double *);
3571 
3572 extern void __kmp_enable(int old_state);
3573 extern void __kmp_disable(int *old_state);
3574 
3575 extern void __kmp_thread_sleep(int millis);
3576 
3577 extern void __kmp_common_initialize(void);
3578 extern void __kmp_common_destroy(void);
3579 extern void __kmp_common_destroy_gtid(int gtid);
3580 
3581 #if KMP_OS_UNIX
3582 extern void __kmp_register_atfork(void);
3583 #endif
3584 extern void __kmp_suspend_initialize(void);
3585 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3586 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3587 
3588 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3589  int tid);
3590 extern kmp_team_t *
3591 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3592 #if OMPT_SUPPORT
3593  ompt_data_t ompt_parallel_data,
3594 #endif
3595  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3596  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3597 extern void __kmp_free_thread(kmp_info_t *);
3598 extern void __kmp_free_team(kmp_root_t *,
3599  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3600 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3601 
3602 /* ------------------------------------------------------------------------ */
3603 
3604 extern void __kmp_initialize_bget(kmp_info_t *th);
3605 extern void __kmp_finalize_bget(kmp_info_t *th);
3606 
3607 KMP_EXPORT void *kmpc_malloc(size_t size);
3608 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3609 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3610 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3611 KMP_EXPORT void kmpc_free(void *ptr);
3612 
3613 /* declarations for internal use */
3614 
3615 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3616  size_t reduce_size, void *reduce_data,
3617  void (*reduce)(void *, void *));
3618 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3619 extern int __kmp_barrier_gomp_cancel(int gtid);
3620 
3625 enum fork_context_e {
3626  fork_context_gnu,
3628  fork_context_intel,
3629  fork_context_last
3630 };
3631 extern int __kmp_fork_call(ident_t *loc, int gtid,
3632  enum fork_context_e fork_context, kmp_int32 argc,
3633  microtask_t microtask, launch_t invoker,
3634  kmp_va_list ap);
3635 
3636 extern void __kmp_join_call(ident_t *loc, int gtid
3637 #if OMPT_SUPPORT
3638  ,
3639  enum fork_context_e fork_context
3640 #endif
3641  ,
3642  int exit_teams = 0);
3643 
3644 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3645 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3646 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3647 extern int __kmp_invoke_task_func(int gtid);
3648 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3649  kmp_info_t *this_thr,
3650  kmp_team_t *team);
3651 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3652  kmp_info_t *this_thr,
3653  kmp_team_t *team);
3654 
3655 // should never have been exported
3656 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3657 extern int __kmp_invoke_teams_master(int gtid);
3658 extern void __kmp_teams_master(int gtid);
3659 extern int __kmp_aux_get_team_num();
3660 extern int __kmp_aux_get_num_teams();
3661 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3662 extern void __kmp_user_set_library(enum library_type arg);
3663 extern void __kmp_aux_set_library(enum library_type arg);
3664 extern void __kmp_aux_set_stacksize(size_t arg);
3665 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3666 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3667 
3668 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3669 void kmpc_set_blocktime(int arg);
3670 void ompc_set_nested(int flag);
3671 void ompc_set_dynamic(int flag);
3672 void ompc_set_num_threads(int arg);
3673 
3674 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3675  kmp_team_t *team, int tid);
3676 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3677 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3678  kmp_tasking_flags_t *flags,
3679  size_t sizeof_kmp_task_t,
3680  size_t sizeof_shareds,
3681  kmp_routine_entry_t task_entry);
3682 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3683  kmp_team_t *team, int tid,
3684  int set_curr_task);
3685 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3686 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3687 
3688 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3689  int gtid,
3690  kmp_task_t *task);
3691 extern void __kmp_fulfill_event(kmp_event_t *event);
3692 
3693 extern void __kmp_free_task_team(kmp_info_t *thread,
3694  kmp_task_team_t *task_team);
3695 extern void __kmp_reap_task_teams(void);
3696 extern void __kmp_wait_to_unref_task_teams(void);
3697 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3698  int always);
3699 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3700 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3701 #if USE_ITT_BUILD
3702  ,
3703  void *itt_sync_obj
3704 #endif /* USE_ITT_BUILD */
3705  ,
3706  int wait = 1);
3707 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3708  int gtid);
3709 
3710 extern int __kmp_is_address_mapped(void *addr);
3711 extern kmp_uint64 __kmp_hardware_timestamp(void);
3712 
3713 #if KMP_OS_UNIX
3714 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3715 #endif
3716 
3717 /* ------------------------------------------------------------------------ */
3718 //
3719 // Assembly routines that have no compiler intrinsic replacement
3720 //
3721 
3722 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3723  void *argv[]
3724 #if OMPT_SUPPORT
3725  ,
3726  void **exit_frame_ptr
3727 #endif
3728 );
3729 
3730 /* ------------------------------------------------------------------------ */
3731 
3732 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3733 KMP_EXPORT void __kmpc_end(ident_t *);
3734 
3735 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3736  kmpc_ctor_vec ctor,
3737  kmpc_cctor_vec cctor,
3738  kmpc_dtor_vec dtor,
3739  size_t vector_length);
3740 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3741  kmpc_ctor ctor, kmpc_cctor cctor,
3742  kmpc_dtor dtor);
3743 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3744  void *data, size_t size);
3745 
3746 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3747 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3748 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3749 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3750 
3751 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3752 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3753  kmpc_micro microtask, ...);
3754 
3755 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3756 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3757 
3758 KMP_EXPORT void __kmpc_flush(ident_t *);
3759 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3760 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3761 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3762 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3763  kmp_int32 filter);
3764 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3765 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3766 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3767 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3768  kmp_critical_name *);
3769 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3770  kmp_critical_name *);
3771 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3772  kmp_critical_name *, uint32_t hint);
3773 
3774 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3775 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3776 
3777 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3778  kmp_int32 global_tid);
3779 
3780 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3781 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3782 
3783 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3784  kmp_int32 schedtype, kmp_int32 *plastiter,
3785  kmp_int *plower, kmp_int *pupper,
3786  kmp_int *pstride, kmp_int incr,
3787  kmp_int chunk);
3788 
3789 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3790 
3791 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3792  size_t cpy_size, void *cpy_data,
3793  void (*cpy_func)(void *, void *),
3794  kmp_int32 didit);
3795 
3796 extern void KMPC_SET_NUM_THREADS(int arg);
3797 extern void KMPC_SET_DYNAMIC(int flag);
3798 extern void KMPC_SET_NESTED(int flag);
3799 
3800 /* OMP 3.0 tasking interface routines */
3801 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3802  kmp_task_t *new_task);
3803 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3804  kmp_int32 flags,
3805  size_t sizeof_kmp_task_t,
3806  size_t sizeof_shareds,
3807  kmp_routine_entry_t task_entry);
3808 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3809  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3810  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3811 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3812  kmp_task_t *task);
3813 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3814  kmp_task_t *task);
3815 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3816  kmp_task_t *new_task);
3817 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3818 
3819 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3820  int end_part);
3821 
3822 #if TASK_UNUSED
3823 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3824 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3825  kmp_task_t *task);
3826 #endif // TASK_UNUSED
3827 
3828 /* ------------------------------------------------------------------------ */
3829 
3830 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3831 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3832 
3833 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3834  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3835  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3836  kmp_depend_info_t *noalias_dep_list);
3837 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3838  kmp_int32 ndeps,
3839  kmp_depend_info_t *dep_list,
3840  kmp_int32 ndeps_noalias,
3841  kmp_depend_info_t *noalias_dep_list);
3842 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3843  bool serialize_immediate);
3844 
3845 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3846  kmp_int32 cncl_kind);
3847 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3848  kmp_int32 cncl_kind);
3849 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3850 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3851 
3852 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3853 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3854 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3855  kmp_int32 if_val, kmp_uint64 *lb,
3856  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3857  kmp_int32 sched, kmp_uint64 grainsize,
3858  void *task_dup);
3859 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3860  kmp_task_t *task, kmp_int32 if_val,
3861  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3862  kmp_int32 nogroup, kmp_int32 sched,
3863  kmp_uint64 grainsize, kmp_int32 modifier,
3864  void *task_dup);
3865 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3866 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3867 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3868 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3869  int is_ws, int num,
3870  void *data);
3871 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3872  int num, void *data);
3873 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3874  int is_ws);
3875 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3876  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3877  kmp_task_affinity_info_t *affin_list);
3878 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3879 KMP_EXPORT int __kmp_get_max_teams(void);
3880 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3881 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
3882 
3883 /* Lock interface routines (fast versions with gtid passed in) */
3884 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3885  void **user_lock);
3886 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3887  void **user_lock);
3888 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3889  void **user_lock);
3890 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3891  void **user_lock);
3892 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3893 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3894  void **user_lock);
3895 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3896  void **user_lock);
3897 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3898  void **user_lock);
3899 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3900 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3901  void **user_lock);
3902 
3903 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3904  void **user_lock, uintptr_t hint);
3905 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3906  void **user_lock,
3907  uintptr_t hint);
3908 
3909 /* Interface to fast scalable reduce methods routines */
3910 
3911 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3912  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3913  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3914  kmp_critical_name *lck);
3915 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3916  kmp_critical_name *lck);
3917 KMP_EXPORT kmp_int32 __kmpc_reduce(
3918  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3919  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3920  kmp_critical_name *lck);
3921 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3922  kmp_critical_name *lck);
3923 
3924 /* Internal fast reduction routines */
3925 
3926 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3927  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3928  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3929  kmp_critical_name *lck);
3930 
3931 // this function is for testing set/get/determine reduce method
3932 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3933 
3934 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3935 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3936 
3937 // C++ port
3938 // missing 'extern "C"' declarations
3939 
3940 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3941 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3942 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3943  kmp_int32 num_threads);
3944 
3945 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3946  int proc_bind);
3947 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3948  kmp_int32 num_teams,
3949  kmp_int32 num_threads);
3950 /* Function for OpenMP 5.1 num_teams clause */
3951 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
3952  kmp_int32 num_teams_lb,
3953  kmp_int32 num_teams_ub,
3954  kmp_int32 num_threads);
3955 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3956  kmpc_micro microtask, ...);
3957 struct kmp_dim { // loop bounds info casted to kmp_int64
3958  kmp_int64 lo; // lower
3959  kmp_int64 up; // upper
3960  kmp_int64 st; // stride
3961 };
3962 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3963  kmp_int32 num_dims,
3964  const struct kmp_dim *dims);
3965 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3966  const kmp_int64 *vec);
3967 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3968  const kmp_int64 *vec);
3969 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3970 
3971 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3972  void *data, size_t size,
3973  void ***cache);
3974 
3975 // Symbols for MS mutual detection.
3976 extern int _You_must_link_with_exactly_one_OpenMP_library;
3977 extern int _You_must_link_with_Intel_OpenMP_library;
3978 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3979 extern int _You_must_link_with_Microsoft_OpenMP_library;
3980 #endif
3981 
3982 // The routines below are not exported.
3983 // Consider making them 'static' in corresponding source files.
3984 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3985  void *data_addr, size_t pc_size);
3986 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3987  void *data_addr,
3988  size_t pc_size);
3989 void __kmp_threadprivate_resize_cache(int newCapacity);
3990 void __kmp_cleanup_threadprivate_caches();
3991 
3992 // ompc_, kmpc_ entries moved from omp.h.
3993 #if KMP_OS_WINDOWS
3994 #define KMPC_CONVENTION __cdecl
3995 #else
3996 #define KMPC_CONVENTION
3997 #endif
3998 
3999 #ifndef __OMP_H
4000 typedef enum omp_sched_t {
4001  omp_sched_static = 1,
4002  omp_sched_dynamic = 2,
4003  omp_sched_guided = 3,
4004  omp_sched_auto = 4
4005 } omp_sched_t;
4006 typedef void *kmp_affinity_mask_t;
4007 #endif
4008 
4009 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4010 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4011 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4012 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4013 KMP_EXPORT int KMPC_CONVENTION
4014 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4015 KMP_EXPORT int KMPC_CONVENTION
4016 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4017 KMP_EXPORT int KMPC_CONVENTION
4018 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4019 
4020 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4021 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4022 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4023 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4024 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4025 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4026 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4027 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4028 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4029  char const *format);
4030 
4031 enum kmp_target_offload_kind {
4032  tgt_disabled = 0,
4033  tgt_default = 1,
4034  tgt_mandatory = 2
4035 };
4036 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4037 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4038 extern kmp_target_offload_kind_t __kmp_target_offload;
4039 extern int __kmpc_get_target_offload();
4040 
4041 // Constants used in libomptarget
4042 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4043 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4044 
4045 // OMP Pause Resource
4046 
4047 // The following enum is used both to set the status in __kmp_pause_status, and
4048 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4049 typedef enum kmp_pause_status_t {
4050  kmp_not_paused = 0, // status is not paused, or, requesting resume
4051  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4052  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4053 } kmp_pause_status_t;
4054 
4055 // This stores the pause state of the runtime
4056 extern kmp_pause_status_t __kmp_pause_status;
4057 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4058 extern int __kmp_pause_resource(kmp_pause_status_t level);
4059 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4060 extern void __kmp_resume_if_soft_paused();
4061 // Hard resume simply resets the status to not paused. Library will appear to
4062 // be uninitialized after hard pause. Let OMP constructs trigger required
4063 // initializations.
4064 static inline void __kmp_resume_if_hard_paused() {
4065  if (__kmp_pause_status == kmp_hard_paused) {
4066  __kmp_pause_status = kmp_not_paused;
4067  }
4068 }
4069 
4070 extern void __kmp_omp_display_env(int verbose);
4071 
4072 // 1: it is initializing hidden helper team
4073 extern volatile int __kmp_init_hidden_helper;
4074 // 1: the hidden helper team is done
4075 extern volatile int __kmp_hidden_helper_team_done;
4076 // 1: enable hidden helper task
4077 extern kmp_int32 __kmp_enable_hidden_helper;
4078 // Main thread of hidden helper team
4079 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4080 // Descriptors for the hidden helper threads
4081 extern kmp_info_t **__kmp_hidden_helper_threads;
4082 // Number of hidden helper threads
4083 extern kmp_int32 __kmp_hidden_helper_threads_num;
4084 // Number of hidden helper tasks that have not been executed yet
4085 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4086 
4087 extern void __kmp_hidden_helper_initialize();
4088 extern void __kmp_hidden_helper_threads_initz_routine();
4089 extern void __kmp_do_initialize_hidden_helper_threads();
4090 extern void __kmp_hidden_helper_threads_initz_wait();
4091 extern void __kmp_hidden_helper_initz_release();
4092 extern void __kmp_hidden_helper_threads_deinitz_wait();
4093 extern void __kmp_hidden_helper_threads_deinitz_release();
4094 extern void __kmp_hidden_helper_main_thread_wait();
4095 extern void __kmp_hidden_helper_worker_thread_wait();
4096 extern void __kmp_hidden_helper_worker_thread_signal();
4097 extern void __kmp_hidden_helper_main_thread_release();
4098 
4099 // Check whether a given thread is a hidden helper thread
4100 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4101  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4102 
4103 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4104  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4105 
4106 #define KMP_HIDDEN_HELPER_TEAM(team) \
4107  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4108 
4109 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4110 // main thread, is skipped.
4111 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4112  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4113 
4114 // Return the adjusted gtid value by subtracting from gtid the number
4115 // of hidden helper threads. This adjusted value is the gtid the thread would
4116 // have received if there were no hidden helper threads.
4117 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4118  int adjusted_gtid = gtid;
4119  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4120  gtid - __kmp_hidden_helper_threads_num >= 0) {
4121  adjusted_gtid -= __kmp_hidden_helper_threads_num;
4122  }
4123  return adjusted_gtid;
4124 }
4125 
4126 // Support for error directive
4127 typedef enum kmp_severity_t {
4128  severity_warning = 1,
4129  severity_fatal = 2
4130 } kmp_severity_t;
4131 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4132 
4133 #ifdef __cplusplus
4134 }
4135 #endif
4136 
4137 template <bool C, bool S>
4138 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4139 template <bool C, bool S>
4140 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4141 template <bool C, bool S>
4142 extern void __kmp_atomic_suspend_64(int th_gtid,
4143  kmp_atomic_flag_64<C, S> *flag);
4144 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4145 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4146 template <bool C, bool S>
4147 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4148 template <bool C, bool S>
4149 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4150 template <bool C, bool S>
4151 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4152 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4153 #endif
4154 template <bool C, bool S>
4155 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4156 template <bool C, bool S>
4157 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4158 template <bool C, bool S>
4159 extern void __kmp_atomic_resume_64(int target_gtid,
4160  kmp_atomic_flag_64<C, S> *flag);
4161 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4162 
4163 template <bool C, bool S>
4164 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4165  kmp_flag_32<C, S> *flag, int final_spin,
4166  int *thread_finished,
4167 #if USE_ITT_BUILD
4168  void *itt_sync_obj,
4169 #endif /* USE_ITT_BUILD */
4170  kmp_int32 is_constrained);
4171 template <bool C, bool S>
4172 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4173  kmp_flag_64<C, S> *flag, int final_spin,
4174  int *thread_finished,
4175 #if USE_ITT_BUILD
4176  void *itt_sync_obj,
4177 #endif /* USE_ITT_BUILD */
4178  kmp_int32 is_constrained);
4179 template <bool C, bool S>
4180 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4181  kmp_atomic_flag_64<C, S> *flag,
4182  int final_spin, int *thread_finished,
4183 #if USE_ITT_BUILD
4184  void *itt_sync_obj,
4185 #endif /* USE_ITT_BUILD */
4186  kmp_int32 is_constrained);
4187 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4188  kmp_flag_oncore *flag, int final_spin,
4189  int *thread_finished,
4190 #if USE_ITT_BUILD
4191  void *itt_sync_obj,
4192 #endif /* USE_ITT_BUILD */
4193  kmp_int32 is_constrained);
4194 
4195 extern int __kmp_nesting_mode;
4196 extern int __kmp_nesting_mode_nlevels;
4197 extern int *__kmp_nesting_nth_level;
4198 extern void __kmp_init_nesting_mode();
4199 extern void __kmp_set_nesting_mode_threads();
4200 
4208  FILE *f;
4209 
4210  void close() {
4211  if (f && f != stdout && f != stderr) {
4212  fclose(f);
4213  f = nullptr;
4214  }
4215  }
4216 
4217 public:
4218  kmp_safe_raii_file_t() : f(nullptr) {}
4219  kmp_safe_raii_file_t(const char *filename, const char *mode,
4220  const char *env_var = nullptr)
4221  : f(nullptr) {
4222  open(filename, mode, env_var);
4223  }
4224  ~kmp_safe_raii_file_t() { close(); }
4225 
4229  void open(const char *filename, const char *mode,
4230  const char *env_var = nullptr) {
4231  KMP_ASSERT(!f);
4232  f = fopen(filename, mode);
4233  if (!f) {
4234  int code = errno;
4235  if (env_var) {
4236  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4237  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4238  } else {
4239  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4240  __kmp_msg_null);
4241  }
4242  }
4243  }
4246  void set_stdout() {
4247  KMP_ASSERT(!f);
4248  f = stdout;
4249  }
4252  void set_stderr() {
4253  KMP_ASSERT(!f);
4254  f = stderr;
4255  }
4256  operator bool() { return bool(f); }
4257  operator FILE *() { return f; }
4258 };
4259 
4260 template <typename SourceType, typename TargetType,
4261  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4262  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4263  bool isSourceSigned = std::is_signed<SourceType>::value,
4264  bool isTargetSigned = std::is_signed<TargetType>::value>
4265 struct kmp_convert {};
4266 
4267 // Both types are signed; Source smaller
4268 template <typename SourceType, typename TargetType>
4269 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4270  static TargetType to(SourceType src) { return (TargetType)src; }
4271 };
4272 // Source equal
4273 template <typename SourceType, typename TargetType>
4274 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4275  static TargetType to(SourceType src) { return src; }
4276 };
4277 // Source bigger
4278 template <typename SourceType, typename TargetType>
4279 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4280  static TargetType to(SourceType src) {
4281  KMP_ASSERT(src <= static_cast<SourceType>(
4282  (std::numeric_limits<TargetType>::max)()));
4283  KMP_ASSERT(src >= static_cast<SourceType>(
4284  (std::numeric_limits<TargetType>::min)()));
4285  return (TargetType)src;
4286  }
4287 };
4288 
4289 // Source signed, Target unsigned
4290 // Source smaller
4291 template <typename SourceType, typename TargetType>
4292 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4293  static TargetType to(SourceType src) {
4294  KMP_ASSERT(src >= 0);
4295  return (TargetType)src;
4296  }
4297 };
4298 // Source equal
4299 template <typename SourceType, typename TargetType>
4300 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4301  static TargetType to(SourceType src) {
4302  KMP_ASSERT(src >= 0);
4303  return (TargetType)src;
4304  }
4305 };
4306 // Source bigger
4307 template <typename SourceType, typename TargetType>
4308 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4309  static TargetType to(SourceType src) {
4310  KMP_ASSERT(src >= 0);
4311  KMP_ASSERT(src <= static_cast<SourceType>(
4312  (std::numeric_limits<TargetType>::max)()));
4313  return (TargetType)src;
4314  }
4315 };
4316 
4317 // Source unsigned, Target signed
4318 // Source smaller
4319 template <typename SourceType, typename TargetType>
4320 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4321  static TargetType to(SourceType src) { return (TargetType)src; }
4322 };
4323 // Source equal
4324 template <typename SourceType, typename TargetType>
4325 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4326  static TargetType to(SourceType src) {
4327  KMP_ASSERT(src <= static_cast<SourceType>(
4328  (std::numeric_limits<TargetType>::max)()));
4329  return (TargetType)src;
4330  }
4331 };
4332 // Source bigger
4333 template <typename SourceType, typename TargetType>
4334 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4335  static TargetType to(SourceType src) {
4336  KMP_ASSERT(src <= static_cast<SourceType>(
4337  (std::numeric_limits<TargetType>::max)()));
4338  return (TargetType)src;
4339  }
4340 };
4341 
4342 // Source unsigned, Target unsigned
4343 // Source smaller
4344 template <typename SourceType, typename TargetType>
4345 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4346  static TargetType to(SourceType src) { return (TargetType)src; }
4347 };
4348 // Source equal
4349 template <typename SourceType, typename TargetType>
4350 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4351  static TargetType to(SourceType src) { return src; }
4352 };
4353 // Source bigger
4354 template <typename SourceType, typename TargetType>
4355 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4356  static TargetType to(SourceType src) {
4357  KMP_ASSERT(src <= static_cast<SourceType>(
4358  (std::numeric_limits<TargetType>::max)()));
4359  return (TargetType)src;
4360  }
4361 };
4362 
4363 template <typename T1, typename T2>
4364 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4365  *dest = kmp_convert<T1, T2>::to(src);
4366 }
4367 
4368 #endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4246
void set_stderr()
Definition: kmp.h:4252
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4229
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:196
@ KMP_IDENT_IMB
Definition: kmp.h:194
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:214
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:205
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:216
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:199
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:223
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:218
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:203
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:201
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1526
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1550
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1544
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1567
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1557
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1579
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1573
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:408
@ kmp_sch_runtime_simd
Definition: kmp.h:379
@ kmp_nm_ord_auto
Definition: kmp.h:427
@ kmp_sch_auto
Definition: kmp.h:364
@ kmp_nm_auto
Definition: kmp.h:410
@ kmp_distribute_static_chunked
Definition: kmp.h:395
@ kmp_sch_static
Definition: kmp.h:360
@ kmp_sch_guided_simd
Definition: kmp.h:378
@ kmp_sch_modifier_monotonic
Definition: kmp.h:445
@ kmp_sch_default
Definition: kmp.h:465
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:447
@ kmp_nm_ord_static
Definition: kmp.h:423
@ kmp_distribute_static
Definition: kmp.h:396
@ kmp_sch_guided_chunked
Definition: kmp.h:362
@ kmp_nm_static
Definition: kmp.h:406
@ kmp_sch_lower
Definition: kmp.h:358
@ kmp_nm_upper
Definition: kmp.h:429
@ kmp_ord_lower
Definition: kmp.h:384
@ kmp_ord_static
Definition: kmp.h:386
@ kmp_sch_upper
Definition: kmp.h:382
@ kmp_ord_upper
Definition: kmp.h:392
@ kmp_nm_lower
Definition: kmp.h:402
@ kmp_ord_auto
Definition: kmp.h:390
Definition: kmp.h:234
kmp_int32 reserved_1
Definition: kmp.h:235
char const * psource
Definition: kmp.h:244
kmp_int32 reserved_2
Definition: kmp.h:238
kmp_int32 reserved_3
Definition: kmp.h:243
kmp_int32 flags
Definition: kmp.h:236